next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Normaliz :: grading

grading

Description

grading is an option for normaliz, intclToricRing, normalToricRing, intclMonIdeal, torusInvariants, finiteDiagInvariants, diagInvariants, intersectionValRings, intersectionValRingIdeals. Its default value is an empty list. If it is set to a list of integers it will be used as grading. This has no influence on the generators of the computed objects, but on additional data like the multiplicity or the hilbert series. The grading may have non-positive entries, but it must give positive values for all generators.

i1 : R=ZZ/37[x,y,t];
i2 : L={x^3, x^2*y, y^3, x*y^2};
i3 : T=intclToricRing(allComputations=>true,L);
i4 : T.cache#"cone"#"inv"#"hilbert series num"

o4 = 1 : (1)

o4 : Sequence
i5 : T.cache#"cone"#"inv"#"hilbert series denom"

o5 = (1, 1)

o5 : Sequence
i6 : T=intclToricRing(allComputations=>true,grading=>{3,2,1},L);
i7 : T.cache#"cone"#"inv"#"hilbert series num"

o7 = (1, -1, 1)

o7 : Sequence
i8 : T.cache#"cone"#"inv"#"hilbert series denom"

o8 = (1, 6)

o8 : Sequence

See also

Functions with optional argument named grading :

For the programmer

The object grading is a symbol.