next | previous | forward | backward | up | top | index | toc | Macaulay2 website
MultiprojectiveVarieties :: point(MultiprojectiveVariety)

point(MultiprojectiveVariety) -- pick a random rational point on a multi-projective variety

Synopsis

Description

i1 : K = ZZ/1000003;
i2 : X = PP_K^({1,1,2},{3,2,3});

o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9
i3 : time p := point X
     -- used 0.163771 seconds

o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1])

o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
i4 : Y = random({2,1,2},X);

o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9
i5 : time q = point Y
     -- used 6.31137 seconds

o5 = q

o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
i6 : assert(isSubset(p,X) and isSubset(q,Y))

The list of homogeneous coordinates can be obtained with the operator |-.

i7 : |- p

o7 = ([421369, 39917, -212481, 1], [-128795, -176966, 1], [3870, -390108,
     ------------------------------------------------------------------------
     -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1])

o7 : Sequence
i8 : |- q

o8 = ([158712, 271608, 202519, 1], [-411495, 350529, 1], [499681, 293896,
     ------------------------------------------------------------------------
     -144543, 481344, 258084, 405184, -259486, -147014, 37168, 1])

o8 : Sequence

See also

Ways to use this method: