top
|
toc
|
Macaulay2 website
MultiGradedRationalMap : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
degreeOfMap
-- computes the degree of a rational map
degreeOfMap(...,Strategy=>...)
-- Choose a strategy for computing the degree of map
degreeOfMap(Ideal)
-- computes the degree of a rational map
degreeOfMapIter
-- computes the degree of a rational map
degreeOfMapIter(Ideal,ZZ)
-- computes the degree of a rational map
gensSatSpecialFib
-- computes generators of the saturated special fiber ring
gensSatSpecialFib(Ideal)
-- computes generators of the saturated special fiber ring
gensSatSpecialFib(Ideal,ZZ)
-- computes generators of the saturated special fiber ring
Hm1Rees0
-- computes the module [Hm^1(Rees(I))]_0
Hm1Rees0(Ideal)
-- computes the module [Hm^1(Rees(I))]_0
Hm1Rees0Strategy
-- A strategy for degreeOfMap
isBiratMap
-- tests the birationality of a rational with the Jacobian dual criterion
isBiratMap(Ideal)
-- tests the birationality of a rational with the Jacobian dual criterion
jacobianDualRank
-- computes the full Jacobian dual rank
jacobianDualRank(Ideal)
-- computes the full Jacobian dual rank
MultiGradedRationalMap
partialJDRs
-- computes the partial Jacobian dual ranks
partialJDRs(Ideal)
-- computes the partial Jacobian dual ranks
satSpecialFiber
(missing documentation)
satSpecialFiber(Ideal)
-- computes the defining equations of the saturated special fiber ring
satSpecialFiberIdeal
-- computes the defining equations of the saturated special fiber ring
satSpecialFiberIdeal(Ideal,ZZ)
-- computes the defining equations of the saturated special fiber ring
SatSpecialFibStrategy
-- A strategy for degreeOfMap
upperBoundDegreeSingleGraded
-- computes an upper bound for the degree of a rational map
upperBoundDegreeSingleGraded(Ideal)
-- computes an upper bound for the degree of a rational map