next | previous | forward | backward | up | top | index | toc | Macaulay2 website
MonomialIntegerPrograms :: minimalPrimesIP

minimalPrimesIP -- one line description if different from minimalPrimesIP



This is basically an alternative version of minimalPrimes.

This function calls topMinimalPrimesIP repeatedly, collecting the primes and passing them in with IgnorePrimes. This is repeated iterations many times or until there are no primes remaining. If iterations is excluded, all minimal primes are returned.

i1 : R = QQ[x,y,z,w,v];
i2 : I = monomialIdeal(y^12, x*y^3, z*w^3, z*v*y^10, z*x^10, v*z^10, w*v^10, y*v*x*z*w);

o2 : MonomialIdeal of R
i3 : ScipPrintLevel = 0;
i4 : minimalPrimesIP(I, 1)

o4 = {monomialIdeal (y, z, v), monomialIdeal (y, z, w)}

o4 : List
i5 : minimalPrimesIP I

o5 = {monomialIdeal (y, z, v), monomialIdeal (y, z, w), monomialIdeal (x, y,
     w, v)}

o5 : List
i6 : minimalPrimes I

o6 = {monomialIdeal (y, z, w), monomialIdeal (y, z, v), monomialIdeal (x, y,
     w, v)}

o6 : List


Warning: more than likely, this with take longer than minimalPrimes to return the same output. It some situations topMinimalPrimesIP is much faster than minimalPrimes, but not all.

See also

Ways to use minimalPrimesIP :

For the programmer

The object minimalPrimesIP is a method function.