next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc > rings > monomial orderings > obtaining the monomial order of a ring

obtaining the monomial order of a ring

The monomial order of a ring is stored as an option.
i1 : R = QQ[x_1 .. x_10, MonomialOrder=>{4,6}];
i2 : options R

o2 = OptionTable{Constants => false                                           }
                 DegreeLift => null
                 DegreeMap => null
                 DegreeRank => 1
                 Degrees => {{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}}
                 Global => true
                 Heft => {1}
                 Inverses => false
                 Join => null
                 Local => false
                 MonomialOrder => {MonomialSize => 32           }
                                  {GRevLex => {1, 1, 1, 1}      }
                                  {GRevLex => {1, 1, 1, 1, 1, 1}}
                                  {Position => Up               }
                 SkewCommutative => {}
                 Variables => {x , x , x , x , x , x , x , x , x , x  }
                                1   2   3   4   5   6   7   8   9   10
                 WeylAlgebra => {}

o2 : OptionTable
i3 : (options R).MonomialOrder

o3 = {MonomialSize => 32           }
     {GRevLex => {1, 1, 1, 1}      }
     {GRevLex => {1, 1, 1, 1, 1, 1}}
     {Position => Up               }

o3 : VerticalList
i4 : S = QQ[a..d];
i5 : (options S).MonomialOrder

o5 = {MonomialSize => 32     }
     {GRevLex => {1, 1, 1, 1}}
     {Position => Up         }

o5 : VerticalList