next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc > The Macaulay2 language > numeric types

numeric types

Integers and rational numbers

In Macaulay2, integers and rational numbers have any number of digits (up to memory limits at least).
i1 : 21672378126371263123123

o1 = 21672378126371263123123
i2 : 3748568762746238746278/5876584978947

     1249522920915412915426
o2 = ----------------------
          1958861659649

o2 : QQ
Integers are elements of the ring ZZ of integers, and rational numbers are elements of the ring QQ of rational numbers.

One point to notice is that there are two kinds of division, / and //. The first returns a rational number (element of QQ), while the second does division in ZZ.

i3 : 6/3

o3 = 2

o3 : QQ
i4 : 7//3

o4 = 2

Real and complex numbers

Real and complex numbers are approximate numbers, implemented using the MPFR library.
i5 : 1.372489274987

o5 = 1.372489274987

o5 : RR (of precision 53)
i6 : 1.3454353 * 10^20

o6 = 1.3454353e20

o6 : RR (of precision 53)
i7 : sqrt 4.5

o7 = 2.12132034355964

o7 : RR (of precision 53)
i8 : toRR_200 4.5

o8 = 4.5

o8 : RR (of precision 200)
i9 : sqrt oo

o9 = 2.12132034355964257320253308631454711785450781306542210976502

o9 : RR (of precision 200)
i10 : 1/(1+ii)

o10 = .5-.5*ii

o10 : CC (of precision 53)

See also