next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc > modules > matrices to and from modules

matrices to and from modules -- including kernel, cokernel and image

matrices to modules (kernel, image, cokernel)

Given a matrix, we may compute the kernel, image, and cokernel.
i1 : R = QQ[a..f];
i2 : F = matrix{{a,b,d,e},{b,c,e,f}}

o2 = | a b d e |
     | b c e f |

             2       4
o2 : Matrix R  <--- R
i3 : M = ker F

o3 = image {1} | cd-be  0      e2-df  ce-bf  |
           {1} | -bd+ae e2-df  0      -be+af |
           {1} | b2-ac  -ce+bf -be+af 0      |
           {1} | 0      cd-be  bd-ae  b2-ac  |

                             4
o3 : R-module, submodule of R
i4 : coker F

o4 = cokernel | a b d e |
              | b c e f |

                            2
o4 : R-module, quotient of R
i5 : image F

o5 = image | a b d e |
           | b c e f |

                             2
o5 : R-module, submodule of R
Some routines in Macaulay2 have abbreviations, for example ker may be used for kernel, and coker may be used for cokernel. The image function has no abbreviated form.

modules to matrices

Each module has, at least implicitly, two matrices associated to it: generators (abbreviated form: gens), and relations. If a module is a submodule of a free module, then the relations matrix is zero. If a module is a quotient of a free module, then the generator matrix is the identity matrix. If a module is a subquotient, then both may be more general.
i6 : generators M

o6 = {1} | cd-be  0      e2-df  ce-bf  |
     {1} | -bd+ae e2-df  0      -be+af |
     {1} | b2-ac  -ce+bf -be+af 0      |
     {1} | 0      cd-be  bd-ae  b2-ac  |

             4       4
o6 : Matrix R  <--- R
i7 : relations M

o7 = 0

             4
o7 : Matrix R  <--- 0

Every finitely generated module has a presentation matrix. In Macaulay2, if the module is not a quotient of a free module, then a syzygy computation is performed to find a presentation matrix.

i8 : presentation M

o8 = {3} | -f -e |
     {3} | b  a  |
     {3} | -c -b |
     {3} | e  d  |

             4       2
o8 : Matrix R  <--- R

See also