- Usage:
`HH^d(R)`

- Function: cohomology
- Inputs:
`i`, an integer`R`, a sheaf of rings, on a projective variety`X`

- Optional inputs:
`Degree => ...`(missing documentation),

- Outputs:
- a module, the
`i`-th cohomology group of`R`as a vector space over the coefficient field of`X`

- a module, the

The command computes the `i`-th cohomology group of `R` as a vector space over the coefficient field of `X`.

i1 : Cubic = Proj(QQ[x_0..x_2]/ideal(x_0^3+x_1^3+x_2^3)) o1 = Cubic o1 : ProjectiveVariety |

i2 : HH^1(OO_Cubic) 1 o2 = QQ o2 : QQ-module, free |

- coherent sheaves
- HH^ZZ SumOfTwists -- coherent sheaf cohomology module
- HH^ZZ CoherentSheaf -- cohomology of a coherent sheaf on a projective variety
- hh -- Hodge numbers of a smooth projective variety
- CoherentSheaf -- the class of all coherent sheaves