i6 : keys H
o6 = {(3, 4), (3, 5), (4, 6), (2, 3)}
o6 : List
|
i7 : H#(2,3)
o7 = {3} | -t_8-t_20t_13 t_7t_20-t_14t_20+t_20t_13t_19
{3} | -t_7+t_14-t_13t_19 -t_8-t_20t_13+t_7t_19-t_14t_19+t_13t_19^2
------------------------------------------------------------------------
-t_2-t_14^2+t_20t_13^2 -t_8t_14+t_1t_20+t_7t_20t_13 |
-t_1-2t_14t_13+t_13^2t_19 -t_2-t_7t_14-t_8t_13+t_1t_19+t_7t_13t_19 |
2 4
o7 : Matrix (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ]) <--- (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ])
6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31 6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31
|
i8 : H#(3,4)
o8 = {4} | -t_20
{4} | -1
{4} | t_8+t_20t_13-t_7t_19+t_14t_19-t_13t_19^2
{4} | -t_7+t_14-t_13t_19
{4} | 0
------------------------------------------------------------------------
-t_8 |
t_13 |
t_2+t_7t_14+t_8t_13-t_1t_19-t_7t_13t_19 |
-t_1-2t_14t_13+t_13^2t_19 |
t_7-t_14+t_13t_19 |
5 2
o8 : Matrix (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ]) <--- (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ])
6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31 6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31
|
i9 : H#(3,5)
o9 = {5} | -1 t_13 -t_14 |
1 3
o9 : Matrix (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ]) <--- (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ])
6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31 6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31
|
i10 : H#(4,6)
o10 = {6} | -1 |
1 1
o10 : Matrix (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ]) <--- (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ])
6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31 6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31
|
i11 : J = trim(minors(1, H#(2,3)) + groebnerStratum F);
o11 : Ideal of kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ]
6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31
|
i12 : compsJ = decompose J;
|
i13 : #compsJ
o13 = 2
|
i14 : pt1 = randomPointOnRationalVariety compsJ_0
o14 = | -48 -21 -28 -32 16 31 15 -12 14 5 -13 29 -40 -22 2 30 25 -10 3 -1 3
-----------------------------------------------------------------------
-30 19 -16 -24 -29 -29 24 -29 -24 -36 21 -8 -38 19 39 |
1 36
o14 : Matrix kk <--- kk
|
i15 : pt2 = randomPointOnRationalVariety compsJ_1
o15 = | 6 29 -50 41 50 -19 -15 -34 -28 -44 21 -45 -23 -13 -23 25 31 -18 45 22
-----------------------------------------------------------------------
-40 17 -47 38 -25 -43 19 26 -47 -15 34 16 0 -28 -39 2 |
1 36
o15 : Matrix kk <--- kk
|
i16 : F1 = sub(F, (vars S)|pt1)
2 2 2
o16 = ideal (a + 2b*c + 5c + 29a*d + 31b*d - 28c*d - 48d , a*b - 24b*c +
-----------------------------------------------------------------------
2 2 2
3c + 3a*d - 40b*d + 14c*d - 21d , a*c + 21b*c - 29c + 24a*d - b*d -
-----------------------------------------------------------------------
2 2 2 2 2
22c*d + 16d , b + 19b*c - 29c - 8a*d - 30b*d + 30c*d + 15d , b*c -
-----------------------------------------------------------------------
2 2 2 2 3 3 2
24b*c*d + 19c d - 29a*d + 25b*d - 13c*d - 32d , c + 39b*c*d - 36c d
-----------------------------------------------------------------------
2 2 2 3
- 38a*d - 16b*d - 10c*d - 12d )
o16 : Ideal of S
|
i17 : betti res F1
0 1 2 3
o17 = total: 1 6 8 3
0: 1 . . .
1: . 4 4 1
2: . 2 4 2
o17 : BettiTally
|
i18 : F2 = sub(F, (vars S)|pt2)
2 2 2
o18 = ideal (a - 23b*c - 44c - 45a*d - 19b*d - 50c*d + 6d , a*b - 25b*c +
-----------------------------------------------------------------------
2 2 2
45c - 40a*d - 23b*d - 28c*d + 29d , a*c + 16b*c - 43c + 26a*d + 22b*d
-----------------------------------------------------------------------
2 2 2 2 2
- 13c*d + 50d , b - 39b*c - 47c + 17b*d + 25c*d - 15d , b*c -
-----------------------------------------------------------------------
2 2 2 2 3 3 2
15b*c*d - 47c d + 19a*d + 31b*d + 21c*d + 41d , c + 2b*c*d + 34c d
-----------------------------------------------------------------------
2 2 2 3
- 28a*d + 38b*d - 18c*d - 34d )
o18 : Ideal of S
|
i19 : betti res F2
0 1 2 3
o19 = total: 1 6 8 3
0: 1 . . .
1: . 4 4 1
2: . 2 4 2
o19 : BettiTally
|