next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Dmodules :: Dmodules

Dmodules -- algorithms for D-modules

Description

To begin, read the D-modules tutorial.

How to make Weyl algebras:

Basic commands:

Some examples of D-modules:

Basic invariants of D-modules:

B-functions:

Resolutions and Functors:

Applications:

Canonical Series:

Programming aids:

Authors

Version

This documentation describes version 1.4.0.1 of Dmodules.

Source code

The source code from which this documentation is derived is in the file Dmodules.m2. The auxiliary files accompanying it are in the directory Dmodules/.

Exports

  • Functions and commands
    • AnnFs -- the annihilating ideal of f^s
    • "AnnIFs" -- see AnnIFs(Ideal,RingElement) -- the annihilating ideal of f^s for an arbitrary D-module
    • AppellF1 -- Appell F1 system of PDE's
    • bFunction -- b-function
    • "bFunctionRoots" -- see bFunctionRoots(RingElement) -- get roots of a b-function
    • BMM -- the characteristic cycle of the localized $D$-module
    • charIdeal -- characteristic ideal of a D-module
    • "createDpairs" -- see createDpairs(PolynomialRing) -- pairs up the variables in Weyl algebra
    • cssExpts -- the exponents of the canonical series solutions of I in the direction of a weight vector
    • cssExptsMult -- the exponents (and multiplicities) of the canonical series solutions of I in the direction of a weight vector
    • Ddim -- dimension of a D-module
    • Ddual -- holonomic dual of a D-module
    • deRham -- deRham cohomology groups for the complement of a hypersurface
    • "deRhamAll" -- see deRhamAll(RingElement) -- deRham complex for the complement of a hypersurface
    • DExt -- Ext groups between holonomic modules
    • DHom -- D-homomorphisms between holonomic D-modules
    • diffOps -- differential operators of up to the given order for a quotient polynomial ring
    • Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateAll" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateClasses" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateComplex" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateIdeal" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • Dintegration -- integration modules of a D-module
    • DintegrationAll -- integration modules of a D-module (extended version)
    • DintegrationClasses -- integration classes of a D-module
    • DintegrationComplex -- derived integration complex of a D-module
    • DintegrationIdeal -- integration ideal of a D-module
    • distraction -- the image in the thetaRing of a torus-fixed ideal in a Weyl algebra
    • Dlocalization -- Dlocalization* is an OBSOLETE name for Dlocalize*
    • "DlocalizationAll" -- see Dlocalization -- Dlocalization* is an OBSOLETE name for Dlocalize*
    • "DlocalizationMap" -- see Dlocalization -- Dlocalization* is an OBSOLETE name for Dlocalize*
    • Dlocalize -- localization of a D-module
    • DlocalizeAll -- localization of a D-module (extended version)
    • DlocalizeMap -- localization map from a D-module to its localization
    • Dprune -- prunes a D-module
    • Dres -- abbreviation for Dresolution
    • Dresolution -- resolution of a D-module
    • Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictAll" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictClasses" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictComplex" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictIdeal" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • Drestriction -- restriction modules of a D-module
    • DrestrictionAll -- restriction modules of a D-module (extended version)
    • DrestrictionClasses -- restriction classes of a D-module
    • DrestrictionComplex -- derived restriction complex of a D-module
    • DrestrictionIdeal -- restriction ideal of a D-module
    • "Dtrace" -- see Dtrace(ZZ) -- set the depth of comments made by D-module routines
    • Dtransposition -- standard transposition for Weyl algebra
    • eulerOperators (missing documentation)
    • ExternalProduct -- external product of modules or complexes
    • extractDiffsAlgebra -- underlying polynomial ring in the differentials of a Weyl algebra
    • extractVarsAlgebra -- underlying polynomial ring in the ordinary variables of a Weyl algebra
    • "factorBFunction" -- see factorBFunction(RingElement) -- factorization of a b-function
    • Fourier -- Fourier transform for Weyl algebra
    • FourierInverse -- Inverse Fourier map (D-modules)
    • gbw -- Groebner bases w.r.t. a weight
    • "generalB" -- see generalB(List,RingElement) -- global generalized Bernstein-Sato polynomial
    • genToDistractionGens -- the image in the thetaRing of a torus-fixed element in a Weyl algebra
    • getDtrace -- (internal) -- get the INFOLEVEL switch
    • getHomSwitch -- (internal) -- get the HOMOGENIZATION switch
    • "getIntRoots" -- see getIntRoots(RingElement) -- get integer roots of a b-function
    • gkz -- The A-hypergeometric systems of Gelfand, Kapranov and Zelevinsky (GKZ)
    • "globalB" -- see globalB(Ideal,RingElement) -- compute global b-function and b-operator for a D-module and a polynomial
    • "globalBFunction" -- see globalBFunction(RingElement) -- global b-function (else known as the Bernstein-Sato polynomial)
    • "globalBoperator" -- see globalBoperator(RingElement) -- compute a b-operator of a polynomial
    • "hasRationalSing" -- see hasRationalSing(List) -- check if a complete intersection has at most rational singularities
    • holonomicRank -- rank of a D-module
    • ICcohom (missing documentation)
    • ICmodule (missing documentation)
    • indicialIdeal -- the image in the thetaRing of an indicial ideal in a Weyl algebra
    • inw -- initial form/ideal w.r.t. a weight
    • isHolonomic -- determines whether a D-module (or ideal in Weyl algebra) is holonomic
    • "isInMultiplierIdeal" -- see isInMultiplierIdeal(RingElement,Ideal,QQ) -- multiplier ideal membership test
    • isTorusFixed -- checks if an ideal in a Weyl algebra is torus-fixed
    • "jumpingCoefficients" -- see jumpingCoefficients(Ideal) -- jumping coefficients and corresponding multiplier ideals
    • kappaAnnF1PlanarCurve -- D-annihilator of 1/f for a planar curve
    • kOrderAnnFa -- k-th order D-annihilator of a power of a polynomial
    • "kOrderAnnFs" -- see kOrderAnnFa -- k-th order D-annihilator of a power of a polynomial
    • "lct" -- see lct(Ideal) -- compute the log canonical threshold for an ideal
    • "localBFunction" -- see localBFunction(RingElement,Ideal) -- local b-function (a.k.a. the local Bernstein-Sato polynomial)
    • localCohom -- local cohomology
    • "logCohomology" -- see logCohomology(RingElement) -- logarithmic cohomology groups in two variables
    • makeCyclic -- finds a cyclic generator of a D-module
    • makeWeylAlgebra -- Weyl algebra corresponding to a polynomial ring
    • "multiplierIdeal" -- see multiplierIdeal(Ideal,QQ) -- multiplier ideal
    • "paramBpoly" -- see paramBpoly(RingElement,String) -- compute the list of all possible Bernstein-Sato polynomials for a polynomial with parametric coefficients
    • pInfo -- prints tracing info
    • PolyAnn -- annihilator of a polynomial in the Weyl algebra
    • PolyExt -- Ext groups between a holonomic module and a polynomial ring
    • PolySols -- polynomial solutions of a holonomic system
    • "populateCechComplexCC" -- see populateCechComplexCC(Ideal,List) -- Cech complex skeleton for the computation of the characteristic cycles of local cohomology modules
    • "pruneCechComplexCC" -- see pruneCechComplexCC(MutableHashTable) -- reduction of the Cech complex that produces characteristic cycles of local cohomology modules
    • "pruneLocalCohom" -- see pruneLocalCohom(HashTable) -- prunes local cohomology modules
    • "putWeylAlgebra" -- see putWeylAlgebra(HashTable) -- transforms output of diffOps into elements of Weyl algebra
    • RatAnn -- annihilator of a rational function in Weyl algebra
    • RatExt -- Ext(holonomic D-module, polynomial ring localized at the singular locus)
    • RatSols -- rational solutions of a holonomic system
    • reiffen -- Reiffen's curve
    • "setHomSwitch" -- see setHomSwitch(Boolean) -- toggles the use of homogeneous Weyl algebra
    • singLocus -- singular locus of a D-module
    • solveFrobeniusIdeal -- solving Frobenius ideals
    • stafford -- computes 2 generators for a given ideal in the Weyl algebra
    • toricIdealPartials -- image of a monomial map
    • WeylClosure -- Weyl closure of an ideal
  • Methods
    • AnnFs(List) -- the annihilating ideal of f_1^{s_1}...f_r^{s_r}
    • AnnFs(RingElement) -- the annihilating ideal of f^s
    • AnnIFs(Ideal,RingElement) -- the annihilating ideal of f^s for an arbitrary D-module
    • "AppellF1(List)" -- see AppellF1 -- Appell F1 system of PDE's
    • bFunction(Ideal,List) -- b-function of an ideal
    • bFunction(Module,List,List) -- b-function of a holonomic D-module
    • bFunctionRoots(RingElement) -- get roots of a b-function
    • "BMM(Ideal,RingElement)" -- see BMM -- the characteristic cycle of the localized $D$-module
    • "BMM(List,RingElement)" -- see BMM -- the characteristic cycle of the localized $D$-module
    • "charIdeal(Ideal)" -- see charIdeal -- characteristic ideal of a D-module
    • "charIdeal(Module)" -- see charIdeal -- characteristic ideal of a D-module
    • createDpairs(PolynomialRing) -- pairs up the variables in Weyl algebra
    • "cssExpts(Ideal,List)" -- see cssExpts -- the exponents of the canonical series solutions of I in the direction of a weight vector
    • "cssExptsMult(Ideal,List)" -- see cssExptsMult -- the exponents (and multiplicities) of the canonical series solutions of I in the direction of a weight vector
    • "Ddim(Ideal)" -- see Ddim -- dimension of a D-module
    • "Ddim(Module)" -- see Ddim -- dimension of a D-module
    • "Ddual(Ideal)" -- see Ddual -- holonomic dual of a D-module
    • "Ddual(Module)" -- see Ddual -- holonomic dual of a D-module
    • "deRham(RingElement)" -- see deRham -- deRham cohomology groups for the complement of a hypersurface
    • "deRham(ZZ,RingElement)" -- see deRham -- deRham cohomology groups for the complement of a hypersurface
    • deRhamAll(RingElement) -- deRham complex for the complement of a hypersurface
    • "DExt(Module,Module)" -- see DExt -- Ext groups between holonomic modules
    • "DExt(Module,Module,List)" -- see DExt -- Ext groups between holonomic modules
    • "DHom(Ideal,Ideal)" -- see DHom -- D-homomorphisms between holonomic D-modules
    • "DHom(Module,Module)" -- see DHom -- D-homomorphisms between holonomic D-modules
    • "DHom(Module,Module,List)" -- see DHom -- D-homomorphisms between holonomic D-modules
    • "diffOps(Ideal,ZZ)" -- see diffOps -- differential operators of up to the given order for a quotient polynomial ring
    • "diffOps(RingElement,ZZ)" -- see diffOps -- differential operators of up to the given order for a quotient polynomial ring
    • "Dintegrate(Ideal,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "Dintegrate(Module,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "Dintegrate(ZZ,Ideal,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "Dintegrate(ZZ,Module,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateAll(Ideal,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateAll(Module,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateClasses(Ideal,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateClasses(Module,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateClasses(ZZ,Ideal,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateClasses(ZZ,Module,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateComplex(Ideal,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateComplex(Module,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "DintegrateIdeal(Ideal,List)" -- see Dintegrate -- Dintegrate* is an (OBSOLETE) abbreviation for Dintegration*
    • "Dintegration(Ideal,List)" -- see Dintegration -- integration modules of a D-module
    • "Dintegration(Module,List)" -- see Dintegration -- integration modules of a D-module
    • "Dintegration(ZZ,Ideal,List)" -- see Dintegration -- integration modules of a D-module
    • "Dintegration(ZZ,Module,List)" -- see Dintegration -- integration modules of a D-module
    • "DintegrationAll(Ideal,List)" -- see DintegrationAll -- integration modules of a D-module (extended version)
    • "DintegrationAll(Module,List)" -- see DintegrationAll -- integration modules of a D-module (extended version)
    • "DintegrationClasses(Ideal,List)" -- see DintegrationClasses -- integration classes of a D-module
    • "DintegrationClasses(Module,List)" -- see DintegrationClasses -- integration classes of a D-module
    • "DintegrationClasses(ZZ,Ideal,List)" -- see DintegrationClasses -- integration classes of a D-module
    • "DintegrationClasses(ZZ,Module,List)" -- see DintegrationClasses -- integration classes of a D-module
    • "DintegrationComplex(Ideal,List)" -- see DintegrationComplex -- derived integration complex of a D-module
    • "DintegrationComplex(Module,List)" -- see DintegrationComplex -- derived integration complex of a D-module
    • "DintegrationIdeal(Ideal,List)" -- see DintegrationIdeal -- integration ideal of a D-module
    • "distraction(Ideal,Ring)" -- see distraction -- the image in the thetaRing of a torus-fixed ideal in a Weyl algebra
    • "Dlocalization(Ideal,RingElement)" -- see Dlocalization -- Dlocalization* is an OBSOLETE name for Dlocalize*
    • "Dlocalization(Module,RingElement)" -- see Dlocalization -- Dlocalization* is an OBSOLETE name for Dlocalize*
    • "DlocalizationAll(Ideal,RingElement)" -- see Dlocalization -- Dlocalization* is an OBSOLETE name for Dlocalize*
    • "DlocalizationAll(Module,RingElement)" -- see Dlocalization -- Dlocalization* is an OBSOLETE name for Dlocalize*
    • "DlocalizationMap(Ideal,RingElement)" -- see Dlocalization -- Dlocalization* is an OBSOLETE name for Dlocalize*
    • "DlocalizationMap(Module,RingElement)" -- see Dlocalization -- Dlocalization* is an OBSOLETE name for Dlocalize*
    • "Dlocalize(Ideal,RingElement)" -- see Dlocalize -- localization of a D-module
    • "Dlocalize(Module,RingElement)" -- see Dlocalize -- localization of a D-module
    • "DlocalizeAll(Ideal,RingElement)" -- see DlocalizeAll -- localization of a D-module (extended version)
    • "DlocalizeAll(Module,RingElement)" -- see DlocalizeAll -- localization of a D-module (extended version)
    • "DlocalizeMap(Ideal,RingElement)" -- see DlocalizeMap -- localization map from a D-module to its localization
    • "DlocalizeMap(Module,RingElement)" -- see DlocalizeMap -- localization map from a D-module to its localization
    • "Dprune(Matrix)" -- see Dprune -- prunes a D-module
    • "Dprune(Module)" -- see Dprune -- prunes a D-module
    • "Dres(Ideal)" -- see Dres -- abbreviation for Dresolution
    • "Dres(Ideal,List)" -- see Dres -- abbreviation for Dresolution
    • "Dres(Module)" -- see Dres -- abbreviation for Dresolution
    • "Dres(Module,List)" -- see Dres -- abbreviation for Dresolution
    • "Dresolution(Ideal)" -- see Dresolution -- resolution of a D-module
    • "Dresolution(Ideal,List)" -- see Dresolution -- resolution of a D-module
    • "Dresolution(Module)" -- see Dresolution -- resolution of a D-module
    • "Dresolution(Module,List)" -- see Dresolution -- resolution of a D-module
    • "Drestrict(Ideal,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "Drestrict(Module,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "Drestrict(ZZ,Ideal,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "Drestrict(ZZ,Module,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictAll(Ideal,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictAll(Module,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictClasses(Ideal,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictClasses(Ideal,List,ZZ)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictClasses(Module,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictClasses(Module,List,ZZ)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictComplex(Ideal,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictComplex(Ideal,List,ZZ)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictComplex(Module,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictComplex(Module,List,ZZ)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "DrestrictIdeal(Ideal,List)" -- see Drestrict -- an (OBSOLETE) abbreviation for Drestriction
    • "Drestriction(Ideal,List)" -- see Drestriction -- restriction modules of a D-module
    • "Drestriction(Module,List)" -- see Drestriction -- restriction modules of a D-module
    • "Drestriction(ZZ,Ideal,List)" -- see Drestriction -- restriction modules of a D-module
    • "Drestriction(ZZ,Module,List)" -- see Drestriction -- restriction modules of a D-module
    • "DrestrictionAll(Ideal,List)" -- see DrestrictionAll -- restriction modules of a D-module (extended version)
    • "DrestrictionAll(Module,List)" -- see DrestrictionAll -- restriction modules of a D-module (extended version)
    • "DrestrictionClasses(Ideal,List)" -- see DrestrictionClasses -- restriction classes of a D-module
    • "DrestrictionClasses(Module,List)" -- see DrestrictionClasses -- restriction classes of a D-module
    • "DrestrictionClasses(ZZ,Ideal,List)" -- see DrestrictionClasses -- restriction classes of a D-module
    • "DrestrictionClasses(ZZ,Module,List)" -- see DrestrictionClasses -- restriction classes of a D-module
    • "DrestrictionComplex(Ideal,List)" -- see DrestrictionComplex -- derived restriction complex of a D-module
    • "DrestrictionComplex(Module,List)" -- see DrestrictionComplex -- derived restriction complex of a D-module
    • "DrestrictionIdeal(Ideal,List)" -- see DrestrictionIdeal -- restriction ideal of a D-module
    • Dtrace(ZZ) -- set the depth of comments made by D-module routines
    • "Dtransposition(ChainComplex)" -- see Dtransposition -- standard transposition for Weyl algebra
    • "Dtransposition(Ideal)" -- see Dtransposition -- standard transposition for Weyl algebra
    • "Dtransposition(Matrix)" -- see Dtransposition -- standard transposition for Weyl algebra
    • "Dtransposition(RingElement)" -- see Dtransposition -- standard transposition for Weyl algebra
    • "ExternalProduct(ChainComplex,ChainComplex)" -- see ExternalProduct -- external product of modules or complexes
    • "ExternalProduct(Module,Module)" -- see ExternalProduct -- external product of modules or complexes
    • "extractDiffsAlgebra(PolynomialRing)" -- see extractDiffsAlgebra -- underlying polynomial ring in the differentials of a Weyl algebra
    • "extractVarsAlgebra(PolynomialRing)" -- see extractVarsAlgebra -- underlying polynomial ring in the ordinary variables of a Weyl algebra
    • factorBFunction(RingElement) -- factorization of a b-function
    • "Fourier(Ideal)" -- see Fourier -- Fourier transform for Weyl algebra
    • "Fourier(Matrix)" -- see Fourier -- Fourier transform for Weyl algebra
    • "Fourier(RingElement)" -- see Fourier -- Fourier transform for Weyl algebra
    • "FourierInverse(ChainComplex)" -- see FourierInverse -- Inverse Fourier map (D-modules)
    • "FourierInverse(Ideal)" -- see FourierInverse -- Inverse Fourier map (D-modules)
    • "FourierInverse(Matrix)" -- see FourierInverse -- Inverse Fourier map (D-modules)
    • "FourierInverse(Module)" -- see FourierInverse -- Inverse Fourier map (D-modules)
    • "FourierInverse(RingElement)" -- see FourierInverse -- Inverse Fourier map (D-modules)
    • "gbw(Ideal,List)" -- see gbw -- Groebner bases w.r.t. a weight
    • "gbw(Matrix,List)" -- see gbw -- Groebner bases w.r.t. a weight
    • "generalB(List)" -- see generalB(List,RingElement) -- global generalized Bernstein-Sato polynomial
    • generalB(List,RingElement) -- global generalized Bernstein-Sato polynomial
    • "genToDistractionGens(RingElement,Ring)" -- see genToDistractionGens -- the image in the thetaRing of a torus-fixed element in a Weyl algebra
    • getIntRoots(RingElement) -- get integer roots of a b-function
    • "gkz(Matrix,List)" -- see gkz -- The A-hypergeometric systems of Gelfand, Kapranov and Zelevinsky (GKZ)
    • "gkz(Matrix,List,PolynomialRing)" -- see gkz -- The A-hypergeometric systems of Gelfand, Kapranov and Zelevinsky (GKZ)
    • globalB(Ideal,RingElement) -- compute global b-function and b-operator for a D-module and a polynomial
    • globalBFunction(RingElement) -- global b-function (else known as the Bernstein-Sato polynomial)
    • globalBoperator(RingElement) -- compute a b-operator of a polynomial
    • hasRationalSing(List) -- check if a complete intersection has at most rational singularities
    • "holonomicRank(Ideal)" -- see holonomicRank -- rank of a D-module
    • "holonomicRank(Module)" -- see holonomicRank -- rank of a D-module
    • "indicialIdeal(Ideal,List)" -- see indicialIdeal -- the image in the thetaRing of an indicial ideal in a Weyl algebra
    • "inw(Ideal,List)" -- see inw -- initial form/ideal w.r.t. a weight
    • "inw(Matrix,List)" -- see inw -- initial form/ideal w.r.t. a weight
    • "inw(RingElement,List)" -- see inw -- initial form/ideal w.r.t. a weight
    • "isHolonomic(Ideal)" -- see isHolonomic -- determines whether a D-module (or ideal in Weyl algebra) is holonomic
    • "isHolonomic(Module)" -- see isHolonomic -- determines whether a D-module (or ideal in Weyl algebra) is holonomic
    • isInMultiplierIdeal(RingElement,Ideal,QQ) -- multiplier ideal membership test
    • "isTorusFixed(Ideal)" -- see isTorusFixed -- checks if an ideal in a Weyl algebra is torus-fixed
    • jumpingCoefficients(Ideal) -- jumping coefficients and corresponding multiplier ideals
    • "jumpingCoefficients(Ideal,QQ,QQ)" -- see jumpingCoefficients(Ideal) -- jumping coefficients and corresponding multiplier ideals
    • "jumpingCoefficients(Ideal,QQ,ZZ)" -- see jumpingCoefficients(Ideal) -- jumping coefficients and corresponding multiplier ideals
    • "jumpingCoefficients(Ideal,ZZ,QQ)" -- see jumpingCoefficients(Ideal) -- jumping coefficients and corresponding multiplier ideals
    • "jumpingCoefficients(Ideal,ZZ,ZZ)" -- see jumpingCoefficients(Ideal) -- jumping coefficients and corresponding multiplier ideals
    • "kappaAnnF1PlanarCurve(RingElement)" -- see kappaAnnF1PlanarCurve -- D-annihilator of 1/f for a planar curve
    • "kOrderAnnFa(ZZ,RingElement,ZZ)" -- see kOrderAnnFa -- k-th order D-annihilator of a power of a polynomial
    • "kOrderAnnFs(ZZ,RingElement)" -- see kOrderAnnFa -- k-th order D-annihilator of a power of a polynomial
    • lct(Ideal) -- compute the log canonical threshold for an ideal
    • localBFunction(RingElement,Ideal) -- local b-function (a.k.a. the local Bernstein-Sato polynomial)
    • localCohom(Ideal) -- local cohomology of a polynomial ring
    • localCohom(Ideal,Module) -- local cohomology of a D-module
    • localCohom(List,Ideal) -- local cohomology of a polynomial ring
    • localCohom(List,Ideal,Module) -- local cohomology of a D-module
    • localCohom(ZZ,Ideal) -- local cohomology of a polynomial ring
    • localCohom(ZZ,Ideal,Module) -- local cohomology of a D-module
    • logCohomology(RingElement) -- logarithmic cohomology groups in two variables
    • "makeCyclic(Matrix)" -- see makeCyclic -- finds a cyclic generator of a D-module
    • "makeWeylAlgebra(PolynomialRing)" -- see makeWeylAlgebra -- Weyl algebra corresponding to a polynomial ring
    • "multiplierIdeal(Ideal,List)" -- see multiplierIdeal(Ideal,QQ) -- multiplier ideal
    • multiplierIdeal(Ideal,QQ) -- multiplier ideal
    • "multiplierIdeal(Ideal,ZZ)" -- see multiplierIdeal(Ideal,QQ) -- multiplier ideal
    • paramBpoly(RingElement,String) -- compute the list of all possible Bernstein-Sato polynomials for a polynomial with parametric coefficients
    • "pInfo(ZZ,List)" -- see pInfo -- prints tracing info
    • "pInfo(ZZ,Thing)" -- see pInfo -- prints tracing info
    • "PolyAnn(RingElement)" -- see PolyAnn -- annihilator of a polynomial in the Weyl algebra
    • "PolyExt(Ideal)" -- see PolyExt -- Ext groups between a holonomic module and a polynomial ring
    • "PolyExt(Module)" -- see PolyExt -- Ext groups between a holonomic module and a polynomial ring
    • "PolyExt(ZZ,Ideal)" -- see PolyExt -- Ext groups between a holonomic module and a polynomial ring
    • "PolyExt(ZZ,Module)" -- see PolyExt -- Ext groups between a holonomic module and a polynomial ring
    • "PolySols(Ideal)" -- see PolySols -- polynomial solutions of a holonomic system
    • "PolySols(Ideal,List)" -- see PolySols -- polynomial solutions of a holonomic system
    • "PolySols(Module)" -- see PolySols -- polynomial solutions of a holonomic system
    • "PolySols(Module,List)" -- see PolySols -- polynomial solutions of a holonomic system
    • populateCechComplexCC(Ideal,List) -- Cech complex skeleton for the computation of the characteristic cycles of local cohomology modules
    • pruneCechComplexCC(MutableHashTable) -- reduction of the Cech complex that produces characteristic cycles of local cohomology modules
    • pruneLocalCohom(HashTable) -- prunes local cohomology modules
    • putWeylAlgebra(HashTable) -- transforms output of diffOps into elements of Weyl algebra
    • "RatAnn(RingElement)" -- see RatAnn -- annihilator of a rational function in Weyl algebra
    • "RatAnn(RingElement,RingElement)" -- see RatAnn -- annihilator of a rational function in Weyl algebra
    • "RatExt(Ideal)" -- see RatExt -- Ext(holonomic D-module, polynomial ring localized at the singular locus)
    • "RatExt(Ideal,RingElement)" -- see RatExt -- Ext(holonomic D-module, polynomial ring localized at the singular locus)
    • "RatExt(Module)" -- see RatExt -- Ext(holonomic D-module, polynomial ring localized at the singular locus)
    • "RatExt(Module,RingElement)" -- see RatExt -- Ext(holonomic D-module, polynomial ring localized at the singular locus)
    • "RatExt(ZZ,Ideal)" -- see RatExt -- Ext(holonomic D-module, polynomial ring localized at the singular locus)
    • "RatExt(ZZ,Ideal,RingElement)" -- see RatExt -- Ext(holonomic D-module, polynomial ring localized at the singular locus)
    • "RatExt(ZZ,Module)" -- see RatExt -- Ext(holonomic D-module, polynomial ring localized at the singular locus)
    • "RatExt(ZZ,Module,RingElement)" -- see RatExt -- Ext(holonomic D-module, polynomial ring localized at the singular locus)
    • "RatSols(Ideal)" -- see RatSols -- rational solutions of a holonomic system
    • "RatSols(Ideal,List)" -- see RatSols -- rational solutions of a holonomic system
    • "RatSols(Ideal,List,List)" -- see RatSols -- rational solutions of a holonomic system
    • "RatSols(Ideal,RingElement)" -- see RatSols -- rational solutions of a holonomic system
    • "RatSols(Ideal,RingElement,List)" -- see RatSols -- rational solutions of a holonomic system
    • "reiffen(ZZ,ZZ)" -- see reiffen -- Reiffen's curve
    • setHomSwitch(Boolean) -- toggles the use of homogeneous Weyl algebra
    • "singLocus(Ideal)" -- see singLocus -- singular locus of a D-module
    • "singLocus(Module)" -- see singLocus -- singular locus of a D-module
    • "solveFrobeniusIdeal(Ideal)" -- see solveFrobeniusIdeal -- solving Frobenius ideals
    • "stafford(Ideal)" -- see stafford -- computes 2 generators for a given ideal in the Weyl algebra
    • "toricIdealPartials(Matrix,PolynomialRing)" -- see toricIdealPartials -- image of a monomial map
    • "WeylClosure(Ideal)" -- see WeylClosure -- Weyl closure of an ideal
    • "WeylClosure(Ideal,RingElement)" -- see WeylClosure -- Weyl closure of an ideal
  • Symbols

For the programmer

The object Dmodules is a package.