next | previous | forward | backward | up | top | index | toc | Macaulay2 website
ConformalBlocks :: psiDivisorM0nbar

psiDivisorM0nbar -- returns the class of the divisor $\Psi$

Synopsis

Description

Let $U$ be the universal family over $M=\bar{M}_{0,n}$, let $\omega_{U/M}$ be the relative dualizing sheaf, and let $\sigma_i: M \rightarrow U$ be the sections defining the marked points. The divisors $\psi_i$ are defined by $\psi_i := \sigma_i^*(\omega_{U/M})$. We define the class $\Psi$ by $\Psi = \psi_1 + ... + \psi_n.$

i1 : psiDivisorM0nbar(14)

     24      33      40      45      48      49
o1 = --*B  + --*B  + --*B  + --*B  + --*B  + --*B
     13  2   13  3   13  4   13  5   13  6   13  7

o1 : S_14-symmetric divisor on M-0-14-bar

Ways to use psiDivisorM0nbar :

For the programmer

The object psiDivisorM0nbar is a method function.