next | previous | forward | backward | up | top | index | toc | Macaulay2 website
ConformalBlocks :: kappaDivisorM0nbar

kappaDivisorM0nbar -- the class of the divisor kappa

Synopsis

Description

On $\bar{M}_{0,n}$, the divisor kappa may be defined by $K + \Delta$, where $K$ is the canonical divisor, and $\Delta$ is the sum of the boundary classes $B_i$. A fun fact is that kappa . $F_{I_1,I_2,I_3,I_4} =1$ for every F curve.

i1 : kappaDivisorM0nbar(14)

     11      20      27      32      35      36
o1 = --*B  + --*B  + --*B  + --*B  + --*B  + --*B
     13  2   13  3   13  4   13  5   13  6   13  7

o1 : S_14-symmetric divisor on M-0-14-bar

Ways to use kappaDivisorM0nbar :

For the programmer

The object kappaDivisorM0nbar is a method function.