Description
This function takes as input an integer
i and a finitely generated graded
S-module
M, and returns the ith map in
R(M), which is an adjoint of the multiplication map between
M_i and
M_{i+1}.
i1 : S = ZZ/32003[x_0..x_2];
|
i2 : E = ZZ/32003[e_0..e_2, SkewCommutative=>true];
|
i3 : M = coker matrix {{x_0^2, x_1^2, x_2^2}};
|
i4 : bgg(1,M,E)
o4 = {-2} | e_1 e_0 0 |
{-2} | e_2 0 e_0 |
{-2} | 0 e_2 e_1 |
3 3
o4 : Matrix E <--- E
|
i5 : bgg(2,M,E)
o5 = {-3} | e_2 e_1 e_0 |
1 3
o5 : Matrix E <--- E
|