WeylGroups : Index
-
- Weight -- the negative of a weight
-
aboveBruhat -- obtain Weyl group elements just greater than an element for the Bruhat order
-
aboveBruhat(BasicList) -- The Weyl group elements just under the ones in the list for the Bruhat order
-
aboveBruhat(WeylGroupElement) -- Weyl group elements just above a given one for the Bruhat order
-
addRoots -- adding roots
-
addRoots(RootSystem,Root,Root) -- the sum of two roots
-
cartanMatrix -- the Cartan matrix of a root system
-
cartanMatrix(RootSystem) -- the Cartan matrix of a root system
-
connectedComponents -- get the connected components
-
connectedComponents(DynkinDiagram) -- the connected components of a Dynkin diagram
-
coxeterLength -- the length of a reduced decomposition of an element of a Weyl group
-
coxeterLength(WeylGroupElement) -- the length of a reduced decomposition of an element of a Weyl group
-
DynkinDiagram -- the class of Dynkin diagrams
-
dynkinDiagram -- produce a Dynkin Diagram
-
dynkinDiagram(DynkinDiagram,Parabolic) -- the Dynkin diagram of the Levy subgroup of a parabolic
-
dynkinDiagram(RootSystem) -- the Dynkin diagram of a root system
-
dynkinExponents -- the exponents associated to a type
-
dynkinExponents(DynkinType) -- the exponents of the Dynkin type
-
DynkinType -- the class of Dynkin Types
-
dynkinType -- obtaining a Dynkin type
-
DynkinType ++ DynkinType -- the disjoint union of Dynkin Types
-
DynkinType == DynkinType -- the equality of Dynkin Types
-
dynkinType(BasicList) -- constructing a Dynkin type
-
dynkinType(DynkinDiagram) -- the Dynkin type of a Dynkin diagram
-
dynkinType(RootSystem) -- the Dynkin type of a root system
-
endVertices -- the vertices with at most one edge
-
endVertices(DynkinDiagram) -- the vertices of a Dynkin diagram with at most one neighbor
-
eval -- evaluate the dual of a root at something
-
eval(RootSystem,Weight,Root) -- evaluate the dual of a root at a Weight
-
eval(RootSystem,Weight,ZZ) -- evaluate the dual of a simple root at a Weight
-
eval(RootSystem,ZZ,Root) -- evaluate the dual of a root at a fundamental weight
-
eval(RootSystem,ZZ,ZZ) -- evaluate the dual of a simple root at another one
-
halfSumOfRoots -- the half-sum of positive roots
-
halfSumOfRoots(RootSystem) -- the half-sum of positive roots
-
HasseDiagram -- the class of Hasse diagrams
-
hasseDiagramToGraph -- turning a hasse diagram into a graph (intended for graphic representation)
-
hasseDiagramToGraph(HasseDiagram) -- turning a hasse diagram into a graph (intended for graphic representation)
-
HasseGraph -- the class of Hasse graphs
-
hasseGraphToPicture -- construct the picture of a Hasse Graph
-
hasseGraphToPicture(HasseGraph) -- Obtain a picture from a Hasse graph
-
intervalBruhat -- obtaining an interval for the Bruhat order
-
intervalBruhat(WeylGroupElement,WeylGroupElement) -- elements between two given ones for the Bruhat order on a Weyl group
-
intervalBruhat(WeylGroupLeftCoset,WeylGroupLeftCoset) -- elements between two given ones for the Bruhat order on a quotient of a Weyl group
-
intervalBruhat(WeylGroupRightCoset,WeylGroupRightCoset) -- elements between two given ones for the Bruhat order on a quotient of a Weyl group
-
inverse(WeylGroupElement) -- the inverse to an element of a Weyl group
-
isLtBruhat -- compare two Weyl group elements in the Bruhat order
-
isLtBruhat(WeylGroupElement,WeylGroupElement) -- compare two Weyl group elements in the Bruhat order
-
isMinimalRepresentative -- check whether an element of a Weyl group is the minimal representative of a coset
-
isMinimalRepresentative(Parabolic,WeylGroupElement) -- check whether an element of a Weyl group is the minimal representative of a right coset
-
isMinimalRepresentative(Parabolic,WeylGroupElement,Parabolic) -- check whether an element of a Weyl group is the minimal representative of a double coset
-
isMinimalRepresentative(WeylGroupElement,Parabolic) -- check whether an element of a Weyl group is the minimal representative of a left coset
-
isPositiveRoot -- check whether a weight is a positive root
-
isPositiveRoot(RootSystem,Weight) -- check whether a weight is a positive root
-
isReduced -- check whether a decomposition is of minimal length
-
isReduced(BasicList,WeylGroupElement) -- whether an Weyl group element can be multiplied by some simple reflections with length increasing at each step
-
isReduced(RootSystem,BasicList) -- whether a decomposition in simple reflections is reduced
-
isReflection -- checks whether an element of a Weyl group is a reflection
-
isReflection(WeylGroupElement) -- checks whether an element of a Weyl group is a reflection
-
isRoot -- check whether a weight is a root or whether a root is in a parabolic sub root system
-
isRoot(RootSystem,Parabolic,Root) -- check whether a root is in the sub root system of the parabolic
-
isRoot(RootSystem,Weight) -- check whether a weight is a positive root
-
listWeylGroupElements -- list all elements of a given length in a Weyl group
-
listWeylGroupElements(RootSystem,ZZ) -- list all elements of a given length in a Weyl group
-
loadHasseGraph -- load a Hasse graph from a file
-
loadHasseGraph(String) -- load a Hasse graph from a file
-
longestWeylGroupElement -- the longest element of a Weyl group
-
longestWeylGroupElement(RootSystem) -- the longest element of the Weyl group of a root system
-
longestWeylGroupElement(RootSystem,Parabolic) -- the longest element of a parabolic subgroup of the Weyl group of a root system
-
minimalRepresentative -- the minimal representative of a coset
-
minimalRepresentative(WeylGroupDoubleCoset) -- the minimal representative of a coset
-
minimalRepresentative(WeylGroupLeftCoset) -- the minimal representative of a coset
-
minimalRepresentative(WeylGroupRightCoset) -- the minimal representative of a coset
-
neutralWeylGroupElement -- the neutral element of a Weyl group
-
neutralWeylGroupElement(RootSystem) -- the neutral element of the Weyl group of a root system
-
norm(RootSystem,Root) -- the squared norm of a root
-
numberOfPositiveRoots -- the number of positive roots
-
numberOfPositiveRoots(DynkinType) -- the number of positive roots
-
numberOfPositiveRoots(RootSystem) -- the number of positive roots
-
Parabolic -- the class of parabolic subgroups of Weyl groups
-
parabolic -- construct a parabolic
-
Parabolic % WeylGroupElement -- the right coset defined by an element of Weyl group
-
Parabolic % WeylGroupLeftCoset -- the double coset defined by a left coset
-
Parabolic == Parabolic -- equality of parabolics
-
parabolic(RootSystem,Set) -- construct a parabolic from a set of simple roots
-
parabolic(WeylGroupDoubleCoset) -- the parabolic associated to a double coset
-
poincareSeries -- a generating series for number of elements in a Weyl group
-
poincareSeries(HasseDiagram,RingElement) -- the generating series of a Hasse diagram
-
poincareSeries(RootSystem,Parabolic,RingElement) -- the generating series of a quotient of the Weyl group by length
-
poincareSeries(RootSystem,RingElement) -- the generating series of the Weyl group by length
-
positiveRoots -- the set of all positive roots
-
positiveRoots(RootSystem) -- the set of all positive roots
-
positiveRoots(RootSystem,Parabolic) -- the set of all positive roots in a parabolic sugroups
-
rank(DynkinDiagram) -- the rank of a Dynkin diagram
-
rank(RootSystem) -- the rank of a root system
-
reduce -- the product of several reflections
-
reduce(RootSystem,BasicList) -- the product of several reflections with respect to simple roots
-
reducedDecomposition -- the reduced decomposition of an element of a Weyl group
-
reducedDecomposition(WeylGroupElement) -- the reduced decomposition of an element of a Weyl group
-
reflect -- apply the reflection with respect to a root
-
reflect(RootSystem,BasicList,Root) -- apply to a root several reflections with respect to simple roots
-
reflect(RootSystem,BasicList,Weight) -- apply to a weight several reflections with respect to roots
-
reflect(RootSystem,ZZ,Root) -- apply to a root the reflection with respect to a simple root
-
reflect(RootSystem,ZZ,Weight) -- apply to a weight the reflection with respect to a root
-
reflection -- the reflection with respect to a root
-
reflection(RootSystem,Root) -- the reflection with respect to a root
-
Root -- the class of roots (or, more generally, elements of the root lattice)
-
rootCoefficients -- coefficients at the simple roots
-
rootCoefficients(RootSystem,Root) -- the coefficients at the simple roots
-
rootCoefficients(RootSystem,Weight) -- the coefficients at the simple roots
-
RootSystem -- the class of all root systems
-
rootSystem -- obtain a root system
-
RootSystem ++ RootSystem -- the direct sum of root systems
-
RootSystem == RootSystem -- equality of root systems
-
rootSystem(DynkinDiagram) -- the root system corresponding to a Dynkin diagram
-
rootSystem(DynkinType) -- the root system of a given type
-
rootSystem(RootSystem,Parabolic) -- the root system of the Levy subgroup of a parabolic
-
rootSystemA -- a root system of type A
-
rootSystemB -- a root system of type B
-
rootSystemC -- a root system of type C
-
rootSystemD -- a root system of type D
-
rootSystemE -- a root system of type E
-
rootSystemF4 -- the root system of type F4
-
rootSystemG2 -- the root system of type G2
-
scalarProduct -- compute a scalar product (invariant by the Weyl group)
-
scalarProduct(RootSystem,Weight,Weight) -- the scalar product of two weights
-
scalarProduct(RootSystem,ZZ,Weight) -- the scalar product of a fundamental weight and a weight
-
scalarProduct(RootSystem,ZZ,ZZ) -- the scalar product of two fundamental weights
-
simpleRoot -- a simple root
-
simpleRoot(RootSystem,ZZ) -- the n-th simple root
-
storeHasseGraph -- store a Hasse graph in a file
-
storeHasseGraph(HasseGraph,String) -- store a Hasse graph in a file
-
underBruhat -- obtain Weyl group elements less than an element for the Bruhat order
-
underBruhat(BasicList) -- Weyl group elements just under the ones in the list for the Bruhat order
-
underBruhat(WeylGroupElement) -- Weyl group elements just under a given one for the Bruhat order
-
Weight -- the class of weights
-
weight -- construct a weight in the weight lattice of a root system
-
Weight + Weight -- the sum of two weights
-
Weight - Weight -- the difference of two weights
-
weight(RootSystem,BasicList) -- construct a weight from a list
-
weight(RootSystem,Vector) -- construct a weight from a vector
-
WeylGroupDoubleCoset -- the class of double cosets of Weyl groups by pairs of parabolic subgroups
-
WeylGroupDoubleCoset == WeylGroupDoubleCoset -- equality of double cosets
-
WeylGroupElement -- the class of elements of Weyl groups
-
WeylGroupElement % Parabolic -- the left coset defined by an element of Weyl group
-
WeylGroupElement * Root -- apply an element of a Weyl group to a root
-
WeylGroupElement * Weight -- apply an element of a Weyl group to a weight
-
WeylGroupElement * WeylGroupElement -- the product of two elements of a Weyl group
-
WeylGroupElement * WeylGroupLeftCoset -- apply an element of a Weyl group to a left coset
-
WeylGroupElement == WeylGroupElement -- equality of elements of Weyl groups
-
WeylGroupElement ^ ZZ -- the power of an element of a Weyl group
-
WeylGroupLeftCoset -- the class of left cosets of Weyl groups by parabolic subgroup
-
WeylGroupLeftCoset == WeylGroupLeftCoset -- equality of left cosets
-
WeylGroupRightCoset -- the class of right cosets of Weyl groups by parabolic subgroups
-
WeylGroupRightCoset % Parabolic -- the double coset defined by a right coset
-
WeylGroupRightCoset * WeylGroupElement -- apply an element of a Weyl group to a left coset
-
WeylGroupRightCoset == WeylGroupRightCoset -- equality of right cosets
-
WeylGroups -- Weyl groups
-
whoseReflection -- the positive root whose reflection is a given element of a Weyl group
-
whoseReflection(WeylGroupElement) -- the positive root whose reflection is a given element of a Weyl group
-
ZZ * Root -- multiplication of a root by an integer
-
ZZ * Weight -- the multiple of a weight