VectorFields : Index
-
applyVectorField -- apply a vector field to a function or functions
-
applyVectorField(Matrix,List) -- apply a vector field to a function or functions
-
applyVectorField(Matrix,RingElement) -- apply a vector field to a function or functions
-
applyVectorField(Module,Ideal) -- apply a vector field to a function or functions
-
applyVectorField(Module,RingElement) -- apply a vector field to a function or functions
-
applyVectorField(Vector,List) -- apply a vector field to a function or functions
-
applyVectorField(Vector,RingElement) -- apply a vector field to a function or functions
-
bracket -- compute the Lie bracket of vector fields
-
bracket(Matrix,Matrix) -- compute the Lie bracket of vector fields
-
bracket(Matrix,Matrix,List) -- compute the Lie bracket of vector fields
-
bracket(Module,Module) -- compute the Lie bracket of vector fields
-
bracket(Vector,Vector) -- compute the Lie bracket of vector fields
-
commutator -- the commutator of a collection of vector fields
-
commutator(Matrix) -- the commutator of a collection of vector fields
-
commutator(Module) -- the commutator of a collection of vector fields
-
der -- compute the module of vector fields which send one set to another
-
der(Ideal,Ideal) -- compute the module of vector fields which send one set to another
-
der(VisibleList,Ideal) -- compute the module of vector fields which send one set to another
-
derivedSeries -- compute the derived series of a set of vector fields
-
derivedSeries(ZZ,Matrix) -- compute the derived series of a set of vector fields
-
derivedSeries(ZZ,Module) -- compute the derived series of a set of vector fields
-
derlog -- compute the logarithmic (tangent) vector fields to an ideal
-
derlog(Ideal) -- compute the logarithmic (tangent) vector fields to an ideal
-
derlog(RingElement) -- compute the logarithmic (tangent) vector fields to an ideal
-
derlogH -- compute the logarithmic (tangent) vector fields to an ideal
-
derlogH(List) -- compute the logarithmic (tangent) vector fields to an ideal
-
derlogH(RingElement) -- compute the logarithmic (tangent) vector fields to an ideal
-
differences between certain bracketing functions -- The difference between certain bracketing functions
-
homogeneousVectorFieldDegree -- check if vector fields are homogeneous, and of what degree
-
homogeneousVectorFieldDegree(Matrix) -- check if vector fields are homogeneous, and of what degree
-
homogeneousVectorFieldDegree(Module) -- check if vector fields are homogeneous, and of what degree
-
isFiniteStratification -- checks if a stratification by integral submanifolds is finite
-
isFiniteStratification(StratificationByRank) -- checks if a stratification by integral submanifolds is finite
-
isFreeDivisor -- check if the provided information is associated with a free divisor
-
isFreeDivisor(Matrix) -- check if the provided information is associated with a free divisor
-
isFreeDivisor(Module) -- check if the provided information is associated with a free divisor
-
isFreeDivisor(RingElement) -- check if the provided information is associated with a free divisor
-
isHHolonomic -- test whether a hypersurface is H-holonomic
-
isHHolonomic(RingElement) -- test whether a hypersurface is H-holonomic
-
isHolonomic -- test whether an algebraic set is holonomic
-
isHolonomic(Ideal) -- test whether an algebraic set is holonomic
-
isHolonomic(RingElement) -- test whether an algebraic set is holonomic
-
isHomogeneousVectorField -- determine whether a matrix or module is generated by homogeneous vector fields
-
isHomogeneousVectorField(Matrix) -- determine whether a matrix or module is generated by homogeneous vector fields
-
isHomogeneousVectorField(Matrix,List) -- determine whether a matrix or module is generated by homogeneous vector fields
-
isHomogeneousVectorField(Matrix,Set) -- determine whether a matrix or module is generated by homogeneous vector fields
-
isHomogeneousVectorField(Module) -- determine whether a matrix or module is generated by homogeneous vector fields
-
isHomogeneousVectorField(Module,List) -- determine whether a matrix or module is generated by homogeneous vector fields
-
isHomogeneousVectorField(Module,Set) -- determine whether a matrix or module is generated by homogeneous vector fields
-
isLieAlgebra -- check that a module of vector fields is closed under the Lie bracket
-
isLieAlgebra(Module) -- check that a module of vector fields is closed under the Lie bracket
-
isLogarithmic -- check if the given vector fields are logarithmic
-
isLogarithmic(Matrix,Ideal) -- check if the given vector fields are logarithmic
-
isLogarithmic(Module,Ideal) -- check if the given vector fields are logarithmic
-
isLogarithmic(Vector,Ideal) -- check if the given vector fields are logarithmic
-
isVectorField -- test whether a module or matrix can be interpreted as a collection of vector fields
-
isVectorField(Matrix) -- test whether a module or matrix can be interpreted as a collection of vector fields
-
isVectorField(Module) -- test whether a module or matrix can be interpreted as a collection of vector fields
-
lowerCentralSeries -- compute the lower central series of a set of vector fields
-
lowerCentralSeries(ZZ,Matrix) -- compute the lower central series of a set of vector fields
-
lowerCentralSeries(ZZ,Module) -- compute the lower central series of a set of vector fields
-
StratificationByRank -- a type to hold a rank computation
-
stratifyByRank -- compute ideals describing where the vector fields have a particular rank
-
stratifyByRank(Matrix) -- compute ideals describing where the vector fields have a particular rank
-
stratifyByRank(Module) -- compute ideals describing where the vector fields have a particular rank
-
VectorFields -- a package for manipulating polynomial vector fields