i1 : P = hypercube 3
o1 = P
o1 : Polyhedron
|
i2 : A = vertices P
o2 = | -1 1 -1 1 -1 1 -1 1 |
| -1 -1 1 1 -1 -1 1 1 |
| -1 -1 -1 -1 1 1 1 1 |
3 8
o2 : Matrix QQ <--- QQ
|
i3 : T = topcomRegularFineTriangulation A
o3 = {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
------------------------------------------------------------------------
{3, 5, 6, 7}}
o3 : List
|
i4 : tri = triangulation(A, T)
o4 = triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}
o4 : Triangulation
|
i5 : matrix tri
o5 = | -1 1 -1 1 -1 1 -1 1 |
| -1 -1 1 1 -1 -1 1 1 |
| -1 -1 -1 -1 1 1 1 1 |
| 1 1 1 1 1 1 1 1 |
4 8
o5 : Matrix QQ <--- QQ
|
i6 : vectors tri
o6 = {{-1, -1, -1, 1}, {1, -1, -1, 1}, {-1, 1, -1, 1}, {1, 1, -1, 1}, {-1,
------------------------------------------------------------------------
-1, 1, 1}, {1, -1, 1, 1}, {-1, 1, 1, 1}, {1, 1, 1, 1}}
o6 : List
|
i7 : max tri
o7 = {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
------------------------------------------------------------------------
{3, 5, 6, 7}}
o7 : List
|
i8 : isWellDefined tri
o8 = true
|
i9 : netList affineCircuits tri
+------+------+
o9 = |{1, 2}|{0, 3}|
+------+------+
|{3, 4}|{2, 5}|
+------+------+
|{3, 4}|{1, 6}|
+------+------+
|{5, 6}|{4, 7}|
+------+------+
|
i10 : isFine tri
o10 = true
|
i11 : isStar tri
o11 = false
|
i12 : isRegularTriangulation tri
o12 = true
|