Description
For a vector bundle in Kaneyama's description the graded ring is QQ with degree space the lattice of the underlying fan.
i1 : E = tangentBundle(projectiveSpaceFan 3,"Type" => "Kaneyama")
o1 = {dimension of the variety => 3 }
number of affine charts => 4
rank of the vector bundle => 3
o1 : ToricVectorBundleKaneyama

i2 : ring E
o2 = QQ[]
o2 : PolynomialRing

For a vector bundle in Klyachko's description the graded ring is QQ with degree space the lattice of the underlying fan.
i3 : E = toricVectorBundle(1,projectiveSpaceFan 2, toList(3:matrix{{1/2}}),toList(3:matrix{{1}}))
o3 = {dimension of the variety => 2 }
number of affine charts => 3
number of rays => 3
rank of the vector bundle => 1
o3 : ToricVectorBundleKlyachko

i4 : ring E
o4 = QQ[]
o4 : PolynomialRing
