# kernel(ToricVectorBundleKlyachko,Matrix) -- the kernel of a morphism to a vector bundle

## Description

M must be a matrix over ZZ or QQ where the source space is the space of the bundle, i.e., the matrix must have $k$ columns if the bundle has rank $k$. Then the new bundle is given on each ray $\rho$ by the following filtration of ker$(E,M)^\rho :=$ ker$(M) \cap (E^\rho)$ :

ker$(E,M)^\rho(i) :=$ ker$(M) \cap E^\rho(i)$.

 i1 : E = tangentBundle hirzebruchFan 2 o1 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 2 o1 : ToricVectorBundleKlyachko i2 : E = E ** E o2 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 4 o2 : ToricVectorBundleKlyachko i3 : M = matrix {{1,0,1,0},{0,1,0,1/1}} o3 = | 1 0 1 0 | | 0 1 0 1 | 2 4 o3 : Matrix QQ <--- QQ i4 : E1 = ker(E,M) o4 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 2 o4 : ToricVectorBundleKlyachko i5 : details E1 o5 = HashTable{| -1 | => (| -1/2 1/2 |, | -1 0 |)} | 2 | | 1 0 | | 0 | => (| 0 1 |, | -1 0 |) | -1 | | 1 0 | | 0 | => (| 0 1 |, | -1 0 |) | 1 | | 1 0 | | 1 | => (| 1 0 |, | -1 0 |) | 0 | | 0 1 | o5 : HashTable