next | previous | forward | backward | up | top | index | toc | Macaulay2 website
ThinSincereQuivers :: bipartiteQuiver

bipartiteQuiver -- make a toric quiver on underlying bipartite graph

Synopsis

Description

This function creates the unique toric quiver whose underlying graph is the fully connected bipartite graph with N source vertices and M sink vertices.

i1 : Q = bipartiteQuiver (2, 3)

o1 = ToricQuiver{flow => {1, 1, 1, 1, 1, 1}                            }
                 IncidenceMatrix => | -1 -1 -1 0  0  0  |
                                    | 0  0  0  -1 -1 -1 |
                                    | 1  0  0  1  0  0  |
                                    | 0  1  0  0  1  0  |
                                    | 0  0  1  0  0  1  |
                 Q0 => {0, 1, 2, 3, 4}
                 Q1 => {{0, 2}, {0, 3}, {0, 4}, {1, 2}, {1, 3}, {1, 4}}
                 weights => {-3, -3, 2, 2, 2}

o1 : ToricQuiver
i2 : Q = bipartiteQuiver (2, 3, Flow=>"Random")

o2 = ToricQuiver{flow => {24, 65, 71, 72, 19, 19}                      }
                 IncidenceMatrix => | -1 -1 -1 0  0  0  |
                                    | 0  0  0  -1 -1 -1 |
                                    | 1  0  0  1  0  0  |
                                    | 0  1  0  0  1  0  |
                                    | 0  0  1  0  0  1  |
                 Q0 => {0, 1, 2, 3, 4}
                 Q1 => {{0, 2}, {0, 3}, {0, 4}, {1, 2}, {1, 3}, {1, 4}}
                 weights => {-160, -110, 96, 84, 90}

o2 : ToricQuiver
i3 : Q = bipartiteQuiver (2, 3, Flow=>{1, 2, 1, 3, 1, 4})

o3 = ToricQuiver{flow => {1, 2, 1, 3, 1, 4}                            }
                 IncidenceMatrix => | -1 -1 -1 0  0  0  |
                                    | 0  0  0  -1 -1 -1 |
                                    | 1  0  0  1  0  0  |
                                    | 0  1  0  0  1  0  |
                                    | 0  0  1  0  0  1  |
                 Q0 => {0, 1, 2, 3, 4}
                 Q1 => {{0, 2}, {0, 3}, {0, 4}, {1, 2}, {1, 3}, {1, 4}}
                 weights => {-4, -8, 4, 3, 5}

o3 : ToricQuiver

For the programmer

The object bipartiteQuiver is a function closure.