next | previous | forward | backward | up | top | index | toc | Macaulay2 website
TensorComplexes :: underlyingModules

underlyingModules -- gives the list of underlying modules of a labeled module



One of the key features of a labeled module is that it comes equipped with a list of modules used in its construction. For instance, if $F$ is the tensor product of $A$ and $B$, then the underlying modules of $F$ would be the set $\{ A,B\}$. Similarly, if $G=\wedge^2 A$, then $A$ is the only underlying module of $G$.

i1 : S=ZZ/101[x,y,z];
i2 : A=labeledModule(S^2);

o2 : free S-module with labeled basis
i3 : B=labeledModule(S^5);

o3 : free S-module with labeled basis
i4 : F=A**B

o4 = S

o4 : free S-module with labeled basis
i5 : underlyingModules(F)

       2   5
o5 = {S , S }

o5 : List
i6 : G=exteriorPower(2,A)

o6 = S

o6 : free S-module with labeled basis
i7 : underlyingModules(G)

o7 = {S }

o7 : List

Ways to use underlyingModules :

For the programmer

The object underlyingModules is a method function.