SymbolicPowers : Index
-
A quick introduction to this package -- How to use this package
-
Alternative algorithm to compute the symbolic powers of a prime ideal in positive characteristic
-
assPrimesHeight -- The heights of all associated primes
-
assPrimesHeight(Ideal) -- The heights of all associated primes
-
asymptoticRegularity -- approximates the asymptotic regularity
-
asymptoticRegularity(...,SampleSize=>...) -- optional parameter used for approximating asymptotic invariants that are defined as limits.
-
asymptoticRegularity(Ideal) -- approximates the asymptotic regularity
-
bigHeight -- computes the big height of an ideal
-
bigHeight(Ideal) -- computes the big height of an ideal
-
CIPrimes -- compute the symbolic power by taking the intersection of the powers of the primary components
-
Computing symbolic powers of an ideal
-
containmentProblem -- computes the smallest symbolic power contained in a power of an ideal.
-
containmentProblem(...,CIPrimes=>...) -- compute the symbolic power by taking the intersection of the powers of the primary components
-
containmentProblem(...,InSymbolic=>...) -- an optional parameter used in containmentProblem.
-
containmentProblem(...,UseMinimalPrimes=>...) -- an option to only use minimal primes to calculate symbolic powers
-
containmentProblem(Ideal,ZZ) -- computes the smallest symbolic power contained in a power of an ideal.
-
InSymbolic -- an optional parameter used in containmentProblem.
-
isKonig -- determines if a given square-free ideal is Konig.
-
isKonig(Ideal) -- determines if a given square-free ideal is Konig.
-
isPacked -- determines if a given square-free ideal is packed.
-
isPacked(Ideal) -- determines if a given square-free ideal is packed.
-
isSymbolicEqualOrdinary -- tests if symbolic power is equal to ordinary power
-
isSymbolicEqualOrdinary(Ideal,ZZ) -- tests if symbolic power is equal to ordinary power
-
isSymbPowerContainedinPower -- tests if the m-th symbolic power an ideal is contained the n-th power
-
isSymbPowerContainedinPower(...,CIPrimes=>...) -- compute the symbolic power by taking the intersection of the powers of the primary components
-
isSymbPowerContainedinPower(...,UseMinimalPrimes=>...) -- an option to only use minimal primes to calculate symbolic powers
-
isSymbPowerContainedinPower(Ideal,ZZ,ZZ) -- tests if the m-th symbolic power an ideal is contained the n-th power
-
joinIdeals -- Computes the join of the given ideals
-
joinIdeals(Ideal,Ideal) -- Computes the join of the given ideals
-
lowerBoundResurgence -- computes a lower bound for the resurgence of a given ideal.
-
lowerBoundResurgence(...,SampleSize=>...) -- optional parameter used for approximating asymptotic invariants that are defined as limits.
-
lowerBoundResurgence(...,UseWaldschmidt=>...) -- optional input for computing a lower bound for the resurgence of a given ideal.
-
lowerBoundResurgence(Ideal) -- computes a lower bound for the resurgence of a given ideal.
-
minDegreeSymbPower -- returns the minimal degree of a given symbolic power of an ideal.
-
minDegreeSymbPower(Ideal,ZZ) -- returns the minimal degree of a given symbolic power of an ideal.
-
minimalPart -- intersection of the minimal components
-
minimalPart(Ideal) -- intersection of the minimal components
-
noPackedAllSubs -- finds all substitutions of variables by 1 and/or 0 for which ideal is not Konig.
-
noPackedAllSubs(Ideal) -- finds all substitutions of variables by 1 and/or 0 for which ideal is not Konig.
-
noPackedSub -- finds a substitution of variables by 1 and/or 0 for which an ideal is not Konig.
-
noPackedSub(Ideal) -- finds a substitution of variables by 1 and/or 0 for which an ideal is not Konig.
-
SampleSize -- optional parameter used for approximating asymptotic invariants that are defined as limits.
-
squarefreeGens -- returns all square-free monomials in a minimal generating set of the given ideal.
-
squarefreeGens(Ideal) -- returns all square-free monomials in a minimal generating set of the given ideal.
-
squarefreeInCodim -- finds square-fee monomials in ideal raised to the power of the codimension.
-
squarefreeInCodim(Ideal) -- finds square-fee monomials in ideal raised to the power of the codimension.
-
Sullivant's algorithm for primes in a polynomial ring
-
symbolicDefect -- computes the symbolic defect of an ideal
-
symbolicDefect(...,CIPrimes=>...) -- compute the symbolic power by taking the intersection of the powers of the primary components
-
symbolicDefect(...,UseMinimalPrimes=>...) -- an option to only use minimal primes to calculate symbolic powers
-
symbolicDefect(Ideal,ZZ) -- computes the symbolic defect of an ideal
-
symbolicPolyhedron -- computes the symbolic polyhedron for a monomial ideal.
-
symbolicPolyhedron(Ideal) -- computes the symbolic polyhedron for a monomial ideal.
-
symbolicPolyhedron(MonomialIdeal) -- computes the symbolic polyhedron for a monomial ideal.
-
symbolicPower -- computes the symbolic power of an ideal.
-
symbolicPower(...,CIPrimes=>...) -- compute the symbolic power by taking the intersection of the powers of the primary components
-
symbolicPower(...,UseMinimalPrimes=>...) -- an option to only use minimal primes to calculate symbolic powers
-
symbolicPower(Ideal,ZZ) -- computes the symbolic power of an ideal.
-
symbolicPowerJoin -- computes the symbolic power of the prime ideal using join of ideals.
-
symbolicPowerJoin(Ideal,ZZ) -- computes the symbolic power of the prime ideal using join of ideals.
-
SymbolicPowers -- symbolic powers of ideals
-
symbPowerPrimePosChar
-
symbPowerPrimePosChar(Ideal,ZZ)
-
The Containment Problem
-
The Packing Problem
-
UseMinimalPrimes -- an option to only use minimal primes to calculate symbolic powers
-
UseWaldschmidt -- optional input for computing a lower bound for the resurgence of a given ideal.
-
waldschmidt -- computes the Waldschmidt constant for a homogeneous ideal.
-
waldschmidt(...,SampleSize=>...) -- optional parameter used for approximating asymptotic invariants that are defined as limits.
-
waldschmidt(Ideal) -- computes the Waldschmidt constant for a homogeneous ideal.
-
waldschmidt(MonomialIdeal) -- computes the Waldschmidt constant for a homogeneous ideal.