next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SpecialFanoFourfolds :: unirationalParametrization

unirationalParametrization -- unirational parametrization

Synopsis

Description

The degree of the forms defining the returned map is 10 in the case of cubic fourfolds, and 26 in the case of GM fourfolds.

i1 : K = ZZ/10000019; S = PP_K^(2,2); -- Veronese surface;

o2 : ProjectiveVariety, surface in PP^5
i3 : X = specialCubicFourfold S;

o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
i4 : time f = unirationalParametrization X;
     -- used 0.980961 seconds

o4 : MultirationalMap (rational map from PP^4 to X)
i5 : degreeSequence f

o5 = {[10]}

o5 : List
i6 : degree(f,Strategy=>"random point")

o6 = 2

See also

Ways to use unirationalParametrization :

For the programmer

The object unirationalParametrization is a method function.