In the following example, we define a Gushel-Mukai fourfold containing a so-called $\tau$-quadric.
i1 : K = ZZ/33331; x = gens ring PP_K^8;
|
i3 : S = projectiveVariety ideal(x_6-x_7, x_5, x_3-x_4, x_1, x_0-x_4, x_2*x_7-x_4*x_8);
o3 : ProjectiveVariety, surface in PP^8
|
i4 : X = projectiveVariety ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2-x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4-2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2-3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8);
o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8
|
i5 : time F = specialGushelMukaiFourfold(S,X);
-- used 4.67032 seconds
o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
|
i6 : time describe F
-- used 11.7644 seconds
o6 = Special Gushel-Mukai fourfold of discriminant 10(')
containing a surface in PP^8 of degree 2 and sectional genus 0
cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
and with class in G(1,4) given by s_(3,1)+s_(2,2)
Type: ordinary
(case 1 of Table 1 in arXiv:2002.07026)
|
i7 : assert(F == X)
|