i2 : S = (schubertCycle({2,0},G) * random({{1},{1}},0_G))%G
o2 = S
o2 : ProjectiveVariety, surface in PP^9 (subvariety of codimension 4 in G)
|
i4 : time parameterCount(X,Verbose=>true)
S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
X: GM fourfold containing S
Y: del Pezzo fivefold containing X
h^1(N_{S,Y}) = 0
h^0(N_{S,Y}) = 11
h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
in particular, h^0(I_{S,Y}(2)) is minimal
h^0(N_{S,Y}) + 27 = 38
h^0(N_{S,X}) = 0
dim{[X] : S ⊂ X ⊂ Y} >= 38
dim P(H^0(O_Y(2))) = 39
codim{[X] : S ⊂ X ⊂ Y} <= 1
-- used 6.13387 seconds
o4 = (1, (28, 11, 0))
o4 : Sequence
|