We construct via linkage an arithmetically Gorenstein 3-fold $X = X_{8} \cup X_{7} \subset \bf{P}^7$, of degree 15, with two components of degrees 7 and 8, having Betti table of type [562]. For an artinian reduction $A_F$, the ideal $F^\perp$ contains a pencil of ideals $I_\Gamma$, where $\Gamma=\Gamma_3\cup\Gamma_2$, the union of a three points in a line $L$ and two fixed points on a line $L'$ skew to $L$ . So we construct $X_8$ in the complete intersection of two cubics in a P5 and $X_7$ in a complete intersection $(2,4)$ in another P5. In the construction the intersection $X\cup X'$ of a component $X$ with the other is an anticanonical divisor on $X$.
The betti table is $\phantom{WWWW} \begin{matrix} &0&1&2&3&4\\ \text{total:}&1&9&16&9&1\\ \text{0:}&1&\text{.}&\text{.}&\text{.}&\text{.}\\ \text{1:}&\text{.}&5&6&2&\text{.}\\ \text{2:}&\text{.}&2&4&2&\text{.}\\ \text{3:}&\text{.}&2&6&5&\text{.}\\ \text{4:}&\text{.}&\text{.}&\text{.}&\text{.}&1\\ \end{matrix} $
$X_{7}$ is a 3-fold of degree 7 linked via a $(2,4)$ complete intersection to a $\PP^3$ in a $\PP^5$. The other component $X_8$ of $X$ is a 3-fold of degree 8 linked via a $(3,3)$ complete intersection to another $\PP^3$ in another $\PP^5$. These are constructed do that $X_7$ and $X_8$ intersect in a quartic surface $Z_4$ in the $\PP^3$ which is the intersection of the span of $X_7$ and $X_8$.
i1 : kk=QQ;
|
i2 : U=kk[y0,y1,y2,y3,y4,y5,y6,y7];
|
i3 : P5c=ideal(y0,y1); -- a P5
o3 : Ideal of U
|
i4 : P5a=ideal(y2,y3); --P5 of S8
o4 : Ideal of U
|
i5 : P5b=ideal(y4,y5); --P5 of S7
o5 : Ideal of U
|
i6 : P3ac=P5a+P5c;-- P3 intersection of P5a and P5c
o6 : Ideal of U
|
i7 : P3bc=P5b+P5c;
o7 : Ideal of U
|
i8 : P1=P5a+P5b+P5c; --a line L, the intersection of all three P5s
o8 : Ideal of U
|
i9 : F=matrix{{y0,random(2,U),random(2,P1)},{y1,random(2,U),random(2,P1)}};
2 3
o9 : Matrix U <--- U
|