To get a quartic form $F$ of type [300c], we start with a set of $7$ points, with $3$ of them in a line, and let $F$ be their power sum.
i1 : kk = ZZ/101;
|
i2 : R = kk[x_0..x_3];
|
i3 : HT = bettiStrataExamples(R);
|
i4 : MGamma = (HT#"[300c]")_0
o4 = | 1 0 1 -38 34 -18 -28 |
| 0 1 1 -16 19 -13 -47 |
| 0 0 0 39 -47 -43 38 |
| 0 0 0 21 -39 -15 2 |
4 7
o4 : Matrix R <--- R
|
i5 : IGamma = pointsIdeal MGamma;
o5 : Ideal of R
|
i6 : F = quartic MGamma;
|
We check the type of $F^{\perp}$ and see that the quadratic part $Q$ of $F^{\perp}$ is not a complete intersection.
i7 : quarticType F
o7 = [300c]
|
i8 : Fperp = inverseSystem F;
o8 : Ideal of R
|
i9 : betti res Fperp
0 1 2 3 4
o9 = total: 1 7 12 7 1
0: 1 . . . .
1: . 3 . . .
2: . 4 12 4 .
3: . . . 3 .
4: . . . . 1
o9 : BettiTally
|
i10 : Q = ideal super basis (2,Fperp);
o10 : Ideal of R
|
i11 : betti res Q
0 1 2 3
o11 = total: 1 3 4 2
0: 1 . . .
1: . 3 . .
2: . . 4 2
o11 : BettiTally
|
Now we construct a doubling of $I_{\Gamma}$, which is not necessary the same as $F^{\perp}$, but is of type [300c].
Let $J$ be a subideal of $I_{\Gamma}$ which is a $(2,2,3)$ complete intersection.
i12 : J = ideal(random(2,IGamma),random(2,IGamma),random(3,IGamma));
o12 : Ideal of R
|
i13 : betti res J
0 1 2 3
o13 = total: 1 3 3 1
0: 1 . . .
1: . 2 . .
2: . 1 1 .
3: . . 2 .
4: . . . 1
o13 : BettiTally
|
The colon ideal $I_{p}=J:I_{\Gamma}$ is a set of $5$ points. Performing Construction 2.17, we can find a doubling of $I_{\Gamma}$, which is of type [300c].
i14 : Ip = J : IGamma
2 2 2
o14 = ideal (x x - 18x + 14x x + 49x x - 39x x + 44x , x x + 21x -
1 2 2 0 3 1 3 2 3 3 0 2 2
-----------------------------------------------------------------------
2 2 2
43x x - 50x x + 14x x + 35x , x - 42x - 29x x - 32x x - 36x x +
0 3 1 3 2 3 3 1 2 0 3 1 3 2 3
-----------------------------------------------------------------------
2 2 2 2 2
14x , x x + 19x + 44x x - 36x x - 23x x - 35x , x + 2x - 23x x
3 0 1 2 0 3 1 3 2 3 3 0 2 0 3
-----------------------------------------------------------------------
2
- 32x x - 18x x - 31x )
1 3 2 3 3
o14 : Ideal of R
|
i15 : betti res (Fperp:Ip)
0 1 2 3 4
o15 = total: 1 7 11 8 3
0: 1 . . . .
1: . 7 8 . .
2: . . 3 8 3
o15 : BettiTally
|
i16 : l = random(1,R);
|
i17 : betti res (IGamma+l*Ip)
0 1 2 3 4
o17 = total: 1 7 12 7 1
0: 1 . . . .
1: . 3 . . .
2: . 4 12 4 .
3: . . . 3 .
4: . . . . 1
o17 : BettiTally
|