Posets : Index
-
adjoinMax -- computes the poset with a new maximum element
-
adjoinMax(Poset) -- computes the poset with a new maximum element
-
adjoinMax(Poset,Thing) -- computes the poset with a new maximum element
-
adjoinMin -- computes the poset with a new minimum element
-
adjoinMin(Poset) -- computes the poset with a new minimum element
-
adjoinMin(Poset,Thing) -- computes the poset with a new minimum element
-
allRelations -- computes all relations of a poset
-
allRelations(Poset) -- computes all relations of a poset
-
allRelations(Poset,Boolean) -- computes all relations of a poset
-
antichains -- computes all antichains of a poset
-
antichains(Poset) -- computes all antichains of a poset
-
antichains(Poset,ZZ) -- computes all antichains of a poset
-
AntisymmetryStrategy -- creates a new Poset object
-
areIsomorphic -- determines if two posets are isomorphic
-
areIsomorphic(Poset,Poset) -- determines if two posets are isomorphic
-
atoms -- computes the list of elements covering the minimal elements of a poset
-
atoms(Poset) -- computes the list of elements covering the minimal elements of a poset
-
augmentPoset -- computes the poset with an adjoined minimum and maximum
-
augmentPoset(Poset) -- computes the poset with an adjoined minimum and maximum
-
augmentPoset(Poset,Thing,Thing) -- computes the poset with an adjoined minimum and maximum
-
Bias -- generates a random poset with a given relation probability
-
booleanLattice -- generates the boolean lattice on $n$ elements
-
booleanLattice(ZZ) -- generates the boolean lattice on $n$ elements
-
boundedRegions -- computes the number of bounded regions a hyperplane arrangement divides the space into
-
boundedRegions(List,Ring) -- computes the number of bounded regions a hyperplane arrangement divides the space into
-
chain -- generates the chain poset on $n$ elements
-
chain(ZZ) -- generates the chain poset on $n$ elements
-
chains -- computes all chains of a poset
-
chains(Poset) -- computes all chains of a poset
-
chains(Poset,ZZ) -- computes all chains of a poset
-
characteristicPolynomial -- computes the characteristic polynomial of a ranked poset with a unique minimal element
-
characteristicPolynomial(...,VariableName=>...) -- computes the characteristic polynomial of a ranked poset with a unique minimal element
-
characteristicPolynomial(Poset) -- computes the characteristic polynomial of a ranked poset with a unique minimal element
-
closedInterval -- computes the subposet contained between two points
-
closedInterval(Poset,Thing,Thing) -- computes the subposet contained between two points
-
comparabilityGraph -- produces the comparability graph of a poset
-
comparabilityGraph(Poset) -- produces the comparability graph of a poset
-
compare -- compares two elements in a poset
-
compare(Poset,Thing,Thing) -- compares two elements in a poset
-
connectedComponents(Poset) -- generates a list of connected components of a poset
-
coveringRelations -- computes the minimal list of generating relations of a poset
-
coveringRelations(Poset) -- computes the minimal list of generating relations of a poset
-
coxeterPolynomial -- computes the Coxeter polynomial of a poset
-
coxeterPolynomial(...,VariableName=>...) -- computes the Coxeter polynomial of a poset
-
coxeterPolynomial(Poset) -- computes the Coxeter polynomial of a poset
-
degreePolynomial -- computes the degree polynomial of a poset
-
degreePolynomial(Poset) -- computes the degree polynomial of a poset
-
diamondProduct -- computes the diamond product of two ranked posets
-
diamondProduct(Poset,Poset) -- computes the diamond product of two ranked posets
-
dilworthLattice -- computes the Dilworth lattice of a poset
-
dilworthLattice(Poset) -- computes the Dilworth lattice of a poset
-
dilworthNumber -- computes the Dilworth number of a poset
-
dilworthNumber(Poset) -- computes the Dilworth number of a poset
-
displayPoset -- generates a PDF representation of a poset and attempts to display it
-
displayPoset(...,Jitter=>...) -- generates a PDF representation of a poset and attempts to display it
-
displayPoset(...,PDFDirectory=>...) -- generates a PDF representation of a poset and attempts to display it
-
displayPoset(...,SuppressLabels=>...) -- generates a PDF representation of a poset and attempts to display it
-
displayPoset(Poset) -- generates a PDF representation of a poset and attempts to display it
-
distributiveLattice -- computes the lattice of order ideals of a poset
-
distributiveLattice(Poset) -- computes the lattice of order ideals of a poset
-
divisorPoset -- generates the poset of divisors
-
divisorPoset(List,List,PolynomialRing) -- generates the poset of divisors
-
divisorPoset(RingElement) -- generates the poset of divisors
-
divisorPoset(RingElement,RingElement) -- generates the poset of divisors with a lower and upper bound
-
divisorPoset(ZZ) -- generates the poset of divisors
-
dominanceLattice -- generates the dominance lattice of partitions of $n$
-
dominanceLattice(ZZ) -- generates the dominance lattice of partitions of $n$
-
dropElements -- computes the induced subposet of a poset given a list of elements to remove
-
dropElements(Poset,Function) -- computes the induced subposet of a poset given a list of elements to remove
-
dropElements(Poset,List) -- computes the induced subposet of a poset given a list of elements to remove
-
dual(Poset) -- produces the derived poset with relations reversed
-
Example: Constructing common posets
-
Example: Hibi ideals
-
Example: Intersection lattices
-
Example: LCM-lattices
-
facePoset -- generates the face poset of a simplicial complex
-
facePoset(SimplicialComplex) -- generates the face poset of a simplicial complex
-
filter -- computes the elements above given elements in a poset
-
filter(Poset,List) -- computes the elements above given elements in a poset
-
filtration -- generates the filtration of a poset
-
filtration(Poset) -- generates the filtration of a poset
-
flagChains -- computes the maximal chains in a list of flags of a ranked poset
-
flagChains(Poset,List) -- computes the maximal chains in a list of flags of a ranked poset
-
flagfPolynomial -- computes the flag-f polynomial of a ranked poset
-
flagfPolynomial(...,VariableName=>...) -- computes the flag-f polynomial of a ranked poset
-
flagfPolynomial(Poset) -- computes the flag-f polynomial of a ranked poset
-
flaghPolynomial -- computes the flag-h polynomial of a ranked poset
-
flaghPolynomial(...,VariableName=>...) -- computes the flag-h polynomial of a ranked poset
-
flaghPolynomial(Poset) -- computes the flag-h polynomial of a ranked poset
-
flagPoset -- computes the subposet of specified ranks of a ranked poset
-
flagPoset(Poset,List) -- computes the subposet of specified ranks of a ranked poset
-
fPolynomial -- computes the f-polynomial of a poset
-
fPolynomial(...,VariableName=>...) -- computes the f-polynomial of a poset
-
fPolynomial(Poset) -- computes the f-polynomial of a poset
-
gapConvertPoset -- converts between Macaulay2's Posets and GAP's Posets
-
gapConvertPoset(Array) -- converts between Macaulay2's Posets and GAP's Posets
-
gapConvertPoset(Poset) -- converts between Macaulay2's Posets and GAP's Posets
-
gapConvertPoset(String) -- converts between Macaulay2's Posets and GAP's Posets
-
greeneKleitmanPartition -- computes the Greene-Kleitman partition of a poset
-
greeneKleitmanPartition(...,Strategy=>...) -- computes the Greene-Kleitman partition of a poset
-
greeneKleitmanPartition(Poset) -- computes the Greene-Kleitman partition of a poset
-
GroundSet -- a class for partially ordered sets (posets)
-
hasseDiagram -- produces the Hasse diagram of a poset
-
hasseDiagram(Poset) -- produces the Hasse diagram of a poset
-
height(Poset) -- computes the height of a poset
-
hibiIdeal -- produces the Hibi ideal of a poset
-
hibiIdeal(...,CoefficientRing=>...) -- produces the Hibi ideal of a poset
-
hibiIdeal(Poset) -- produces the Hibi ideal of a poset
-
hibiRing -- produces the Hibi ring of a poset
-
hibiRing(...,CoefficientRing=>...) -- produces the Hibi ring of a poset
-
hibiRing(...,Strategy=>...) -- produces the Hibi ring of a poset
-
hibiRing(Poset) -- produces the Hibi ring of a poset
-
hPolynomial -- computes the h-polynomial of a poset
-
hPolynomial(...,VariableName=>...) -- computes the h-polynomial of a poset
-
hPolynomial(Poset) -- computes the h-polynomial of a poset
-
incomparabilityGraph -- produces the incomparability graph of a poset
-
incomparabilityGraph(Poset) -- produces the incomparability graph of a poset
-
indexLabeling -- relabels a poset with the labeling based on the indices of the vertices
-
indexLabeling(Poset) -- relabels a poset with the labeling based on the indices of the vertices
-
intersectionLattice -- generates the intersection lattice of a hyperplane arrangement
-
intersectionLattice(List,Ring) -- generates the intersection lattice of a hyperplane arrangement
-
isAntichain -- determines if a given list of vertices is an antichain of a poset
-
isAntichain(Poset,List) -- determines if a given list of vertices is an antichain of a poset
-
isAtomic -- determines if a lattice is atomic
-
isAtomic(Poset) -- determines if a lattice is atomic
-
isBounded -- determines if a poset is bounded
-
isBounded(Poset) -- determines if a poset is bounded
-
isComparabilityGraph -- determines if a graph is the comparability graph of a poset
-
isComparabilityGraph(Graph) -- determines if a graph is the comparability graph of a poset
-
isConnected(Poset) -- determines if a poset is connected
-
isDistributive -- determines if a lattice is distributive
-
isDistributive(Poset) -- determines if a lattice is distributive
-
isEulerian(Poset) -- determines if a ranked poset is Eulerian
-
isGeometric -- determines if a lattice is geometric
-
isGeometric(Poset) -- determines if a lattice is geometric
-
isGraded -- determines if a poset is graded
-
isGraded(Poset) -- determines if a poset is graded
-
isLattice -- determines if a poset is a lattice
-
isLattice(Poset) -- determines if a poset is a lattice
-
isLowerSemilattice -- determines if a poset is a lower (or meet) semilattice
-
isLowerSemilattice(Poset) -- determines if a poset is a lower (or meet) semilattice
-
isLowerSemimodular -- determines if a ranked lattice is lower semimodular
-
isLowerSemimodular(Poset) -- determines if a ranked lattice is lower semimodular
-
isModular -- determines if a lattice is modular
-
isModular(Poset) -- determines if a lattice is modular
-
isomorphism -- computes an isomorphism between isomorphic posets
-
isomorphism(Poset,Poset) -- computes an isomorphism between isomorphic posets
-
isRanked -- determines if a poset is ranked
-
isRanked(Poset) -- determines if a poset is ranked
-
isSperner -- determines if a ranked poset has the Sperner property
-
isSperner(Poset) -- determines if a ranked poset has the Sperner property
-
isStrictSperner -- determines if a ranked poset has the strict Sperner property
-
isStrictSperner(Poset) -- determines if a ranked poset has the strict Sperner property
-
isUpperSemilattice -- determines if a poset is an upper (or join) semilattice
-
isUpperSemilattice(Poset) -- determines if a poset is an upper (or join) semilattice
-
isUpperSemimodular -- determines if a lattice is upper semimodular
-
isUpperSemimodular(Poset) -- determines if a lattice is upper semimodular
-
Jitter -- generates a string containing a TikZ-figure of a poset
-
joinExists -- determines if the join exists for two elements of a poset
-
joinExists(Poset,Thing,Thing) -- determines if the join exists for two elements of a poset
-
joinIrreducibles -- determines the join irreducible elements of a poset
-
joinIrreducibles(Poset) -- determines the join irreducible elements of a poset
-
labelPoset -- relabels a poset with the specified labeling
-
labelPoset(Poset,HashTable) -- relabels a poset with the specified labeling
-
lcmLattice -- generates the lattice of lcms in an ideal
-
lcmLattice(...,Strategy=>...) -- generates the lattice of lcms in an ideal
-
lcmLattice(Ideal) -- generates the lattice of lcms in an ideal
-
linearExtensions -- computes all linear extensions of a poset
-
linearExtensions(Poset) -- computes all linear extensions of a poset
-
magnitude -- computes the magnitude of a poset
-
magnitude(Poset) -- computes the magnitude of a poset
-
maximalAntichains -- computes all maximal antichains of a poset
-
maximalAntichains(Poset) -- computes all maximal antichains of a poset
-
maximalChains -- computes all maximal chains of a poset
-
maximalChains(Poset) -- computes all maximal chains of a poset
-
maximalElements -- determines the maximal elements of a poset
-
maximalElements(Poset) -- determines the maximal elements of a poset
-
meetExists -- determines if the meet exists for two elements of a poset
-
meetExists(Poset,Thing,Thing) -- determines if the meet exists for two elements of a poset
-
meetIrreducibles -- determines the meet irreducible elements of a poset
-
meetIrreducibles(Poset) -- determines the meet irreducible elements of a poset
-
minimalElements -- determines the minimal elements of a poset
-
minimalElements(Poset) -- determines the minimal elements of a poset
-
moebiusFunction -- computes the Moebius function at every pair of elements of a poset
-
moebiusFunction(Poset) -- computes the Moebius function at every pair of elements of a poset
-
naturalLabeling -- relabels a poset with a natural labeling
-
naturalLabeling(Poset) -- relabels a poset with a natural labeling
-
naturalLabeling(Poset,ZZ) -- relabels a poset with a natural labeling
-
NCPartition -- generates the non-crossing partitions of size $n$
-
ncPartitions -- generates the non-crossing partitions of size $n$
-
ncPartitions(ZZ) -- generates the non-crossing partitions of size $n$
-
ncpLattice -- computes the non-crossing partition lattice of set-partitions of size $n$
-
ncpLattice(ZZ) -- computes the non-crossing partition lattice of set-partitions of size $n$
-
openInterval -- computes the subposet contained strictly between two points
-
openInterval(Poset,Thing,Thing) -- computes the subposet contained strictly between two points
-
orderComplex -- produces the order complex of a poset
-
orderComplex(...,CoefficientRing=>...) -- produces the order complex of a poset
-
orderComplex(...,VariableName=>...) -- produces the order complex of a poset
-
orderComplex(Poset) -- produces the order complex of a poset
-
orderIdeal -- computes the elements below given elements in a poset
-
orderIdeal(Poset,List) -- computes the elements below given elements in a poset
-
OriginalPoset -- computes the lattice of order ideals of a poset
-
outputTexPoset -- writes a LaTeX file with a TikZ-representation of a poset
-
outputTexPoset(...,Jitter=>...) -- writes a LaTeX file with a TikZ-representation of a poset
-
outputTexPoset(...,SuppressLabels=>...) -- writes a LaTeX file with a TikZ-representation of a poset
-
outputTexPoset(Poset,String) -- writes a LaTeX file with a TikZ-representation of a poset
-
partitionLattice -- computes the lattice of set-partitions of size $n$
-
partitionLattice(ZZ) -- computes the lattice of set-partitions of size $n$
-
PDFDirectory -- generates a PDF representation of a poset and attempts to display it
-
plueckerPoset -- computes a poset associated to the Plücker relations
-
plueckerPoset(ZZ) -- computes a poset associated to the Plücker relations
-
poincare(Poset) -- computes the Poincaré polynomial of a ranked poset with a unique minimal element
-
poincarePolynomial -- computes the Poincaré polynomial of a ranked poset with a unique minimal element
-
poincarePolynomial(...,VariableName=>...) -- computes the Poincaré polynomial of a ranked poset with a unique minimal element
-
poincarePolynomial(Poset) -- computes the Poincaré polynomial of a ranked poset with a unique minimal element
-
Poset -- a class for partially ordered sets (posets)
-
poset -- creates a new Poset object
-
Poset * Poset -- computes the product of two posets
-
Poset + Poset -- computes the union of two posets
-
Poset - List -- computes the induced subposet of a poset given a list of elements to remove
-
Poset == Poset -- determines if two posets are isomorphic
-
Poset _ List -- returns elements of the ground set
-
Poset _ ZZ -- returns an element of the ground set
-
Poset _* -- returns the ground set of a poset
-
poset(...,AntisymmetryStrategy=>...) -- creates a new Poset object
-
poset(List) -- creates a new Poset object
-
poset(List,Function) -- creates a new Poset object
-
poset(List,List) -- creates a new Poset object
-
poset(List,List,Matrix) -- creates a new Poset object
-
posetJoin -- determines the join for two elements of a poset
-
posetJoin(Poset,Thing,Thing) -- determines the join for two elements of a poset
-
posetMeet -- determines the meet for two elements of a poset
-
posetMeet(Poset,Thing,Thing) -- determines the meet for two elements of a poset
-
Posets -- a package for working with partially ordered sets
-
pPartitionRing -- produces the p-partition ring of a poset
-
pPartitionRing(...,CoefficientRing=>...) -- produces the p-partition ring of a poset
-
pPartitionRing(...,Strategy=>...) -- produces the p-partition ring of a poset
-
pPartitionRing(Poset) -- produces the p-partition ring of a poset
-
Precompute -- a package-wide configuration that toggles precomputation
-
principalFilter -- computes the elements above a given element in a poset
-
principalFilter(Poset,Thing) -- computes the elements above a given element in a poset
-
principalOrderIdeal -- computes the elements below a given element in a poset
-
principalOrderIdeal(Poset,Thing) -- computes the elements below a given element in a poset
-
product(Poset,Poset) -- computes the product of two posets
-
projectivizeArrangement -- computes the intersection poset of a projectivized hyperplane arrangement
-
projectivizeArrangement(List,Ring) -- computes the intersection poset of a projectivized hyperplane arrangement
-
randomPoset -- generates a random poset with a given relation probability
-
randomPoset(...,Bias=>...) -- generates a random poset with a given relation probability
-
randomPoset(List) -- generates a random poset with a given relation probability
-
randomPoset(ZZ) -- generates a random poset with a given relation probability
-
rank(Poset) -- generates a list of lists representing the ranks of a ranked poset
-
rankFunction -- computes the rank function of a ranked poset
-
rankFunction(Poset) -- computes the rank function of a ranked poset
-
rankGeneratingFunction -- computes the rank generating function of a ranked poset
-
rankGeneratingFunction(...,VariableName=>...) -- computes the rank generating function of a ranked poset
-
rankGeneratingFunction(Poset) -- computes the rank generating function of a ranked poset
-
rankPoset -- generates a list of lists representing the ranks of a ranked poset
-
rankPoset(Poset) -- generates a list of lists representing the ranks of a ranked poset
-
realRegions -- computes the number of regions a hyperplane arrangement divides the space into
-
realRegions(List,Ring) -- computes the number of regions a hyperplane arrangement divides the space into
-
RelationMatrix -- a class for partially ordered sets (posets)
-
Relations -- a class for partially ordered sets (posets)
-
removeIsomorphicPosets -- returns a sub-list of non-isomorphic posets
-
removeIsomorphicPosets(List) -- returns a sub-list of non-isomorphic posets
-
resolutionPoset -- generates a poset from a resolution
-
resolutionPoset(ChainComplex) -- generates a poset from a resolution
-
resolutionPoset(Ideal) -- generates a poset from a resolution
-
resolutionPoset(MonomialIdeal) -- generates a poset from a resolution
-
setPartition -- computes the list of set-partitions of size $n$
-
setPartition(List) -- computes the list of set-partitions of size $n$
-
setPartition(ZZ) -- computes the list of set-partitions of size $n$
-
setPrecompute -- sets the Precompute configuration
-
setPrecompute(Boolean) -- sets the Precompute configuration
-
setSuppressLabels -- sets the SuppressLabels configuration
-
setSuppressLabels(Boolean) -- sets the SuppressLabels configuration
-
standardMonomialPoset -- generates the poset of divisibility in the monomial basis of an ideal
-
standardMonomialPoset(MonomialIdeal) -- generates the poset of divisibility in the monomial basis of an ideal
-
standardMonomialPoset(MonomialIdeal,ZZ,ZZ) -- generates the poset of divisibility in the monomial basis of an ideal
-
subposet -- computes the induced subposet of a poset given a list of elements
-
subposet(Poset,List) -- computes the induced subposet of a poset given a list of elements
-
SuppressLabels -- generates a string containing a TikZ-figure of a poset
-
tex(Poset) -- generates a string containing a TikZ-figure of a poset
-
texPoset -- generates a string containing a TikZ-figure of a poset
-
texPoset(...,Jitter=>...) -- generates a string containing a TikZ-figure of a poset
-
texPoset(...,SuppressLabels=>...) -- generates a string containing a TikZ-figure of a poset
-
texPoset(Poset) -- generates a string containing a TikZ-figure of a poset
-
transitiveClosure -- computes the transitive closure of a set of relations
-
transitiveClosure(List,List) -- computes the transitive closure of a set of relations
-
transitiveOrientation -- generates a poset whose comparability graph is the given graph
-
transitiveOrientation(...,Random=>...) -- generates a poset whose comparability graph is the given graph
-
transitiveOrientation(...,Strategy=>...) -- generates a poset whose comparability graph is the given graph
-
transitiveOrientation(Graph) -- generates a poset whose comparability graph is the given graph
-
tuttePolynomial -- computes the Tutte polynomial of a poset
-
tuttePolynomial(Poset) -- computes the Tutte polynomial of a poset
-
union -- computes the union of two posets
-
union(Poset,Poset) -- computes the union of two posets
-
vertices(Poset) -- returns the ground set of a poset
-
youngSubposet -- generates a subposet of Young's lattice
-
youngSubposet(List) -- generates a subposet of Young's lattice
-
youngSubposet(List,List) -- generates a subposet of Young's lattice
-
youngSubposet(ZZ) -- generates a subposet of Young's lattice
-
zetaPolynomial -- computes the zeta polynomial of a poset
-
zetaPolynomial(...,VariableName=>...) -- computes the zeta polynomial of a poset
-
zetaPolynomial(Poset) -- computes the zeta polynomial of a poset