next | previous | forward | backward | up | top | index | toc | Macaulay2 website
NumericalImplicitization :: numericalImageSample

numericalImageSample -- samples general points on the image of a variety



This method computes a list of sample points on the image of a variety numerically, by calling numericalSourceSample.

If the number of points $s$ is unspecified, then it is assumed that $s = 1$.

One can optionally provide an initial list of points $P$ on $F(V(I))$, which will then be completed to a list of $s$ points on $F(V(I))$.

The following example samples a point from the twisted cubic. We then independently verify that this point does lie on the twisted cubic.

i1 : R = CC[s,t];
i2 : F = {s^3,s^2*t,s*t^2,t^3};
i3 : p = first numericalImageSample(F, ideal 0_R)

o3 = p

o3 : Point
i4 : A = matrix{p#Coordinates_{0,1,2}, p#Coordinates_{1,2,3}};

                2          3
o4 : Matrix CC    <--- CC
              53         53
i5 : numericalNullity A == 2

o5 = true

Here is how to sample a point from the Grassmannian $Gr(2,4)$ of $P^1$'s in $P^3$, under its Pl&uuml;cker embedding in $P^5$. We take maximal minors of a $2 x 4$ matrix, whose row span gives a $P^1$ in $P^3$.

i6 : R = CC[x_(1,1)..x_(2,4)];
i7 : F = (minors(2, genericMatrix(R, 2, 4)))_*;
i8 : numericalImageSample(F, ideal 0_R)

o8 = {{-.434457-.140153*ii, -.374655-.460763*ii, -.192528-.151059*ii,
     -.113152+.276111*ii, .222593+.353053*ii, .100773+.425004*ii}}

o8 : List

See also

Ways to use numericalImageSample :

For the programmer

The object numericalImageSample is a method function with options.