NCAlgebra : Index
-
- NCMatrix -- Negates NCMatrices
-
ambient(NCQuotientRing) -- Ambient ring of an NCQuotientRing
-
ambient(NCRingMap) -- Extends an NCRingMap to the ambient ring of the source.
-
assignDegrees -- Weights entries of a matrix to make associated map of free modules graded
-
assignDegrees(NCMatrix) -- Weights entries of a matrix to make associated map of free modules graded
-
assignDegrees(NCMatrix,List,List) -- Weights entries of a matrix to make associated map of free modules graded
-
baseName(NCRingElement) -- Returns the base name of a generator of an NCRing
-
Basic operations on noncommutative algebras
-
basis(ZZ,NCIdeal) -- Returns a basis of an NCIdeal in a particular degree.
-
basis(ZZ,NCLeftIdeal) -- Returns a basis of an NCLeftIdeal in a particular degree.
-
basis(ZZ,NCRightIdeal) -- Returns a basis of an NCRightIdeal in a particular degree.
-
basis(ZZ,NCRing) -- Returns a basis of an NCRing in a particular degree.
-
betti(NCChainComplex) -- Compute the resolution of coker M as a map of free right modules
-
centralElements -- Finds central elements in a given degree
-
centralElements(NCRing,ZZ) -- Finds central elements in a given degree
-
coefficientRing(NCRing) -- Returns the base ring of an NCRing
-
coordinates -- Computes coordinates relative to a given basis
-
coordinates(...,Basis=>...) -- Computes coordinates relative to a given basis
-
coordinates(List) -- Computes coordinates relative to a given basis
-
coordinates(NCRingElement) -- Computes coordinates relative to a given basis
-
degree(NCRingElement) -- Returns the degree of an NCRingElement
-
endomorphismRing -- Methods for creating endomorphism rings of modules over a commutative ring
-
endomorphismRing(Module,Symbol) -- Methods for creating endomorphism rings of modules over a commutative ring
-
endomorphismRingGens -- Methods for creating endomorphism rings of modules over a commutative ring
-
entries(NCMatrix) -- Returns the entries of the NCMatrix
-
envelopingAlgebra -- Create the enveloping algebra
-
envelopingAlgebra(NCRing,Symbol) -- Create the enveloping algebra
-
fourDimSklyanin -- Defines a four-dimensional Sklyanin with given parameters
-
fourDimSklyanin(Ring,List) -- Defines a four-dimensional Sklyanin with given parameters
-
fourDimSklyanin(Ring,List,List) -- Defines a four-dimensional Sklyanin with given parameters
-
freeProduct -- Define the free product of two algebras
-
freeProduct(NCRing,NCRing) -- Define the free product of two algebras
-
gbFromOutputFile -- Read in a NCGroebnerBasis from a Bergman output file.
-
gbFromOutputFile(...,CacheBergmanGB=>...) -- Read in a NCGroebnerBasis from a Bergman output file.
-
gbFromOutputFile(...,MakeMonic=>...) -- Read in a NCGroebnerBasis from a Bergman output file.
-
gbFromOutputFile(...,ReturnIdeal=>...) -- Read in a NCGroebnerBasis from a Bergman output file.
-
gbFromOutputFile(NCPolynomialRing,String) -- Read in a NCGroebnerBasis from a Bergman output file.
-
gddKernel -- Computes a homogeneous generating set of the kernel of a ring map.
-
gddKernel(ZZ,NCRingMap) -- Computes a homogeneous generating set of the kernel of a ring map.
-
General setup information
-
generators(NCGroebnerBasis) -- The list of algebra generators of an NCGroebnerBasis
-
generators(NCIdeal) -- Returns the generators of an NCIdeal
-
generators(NCLeftIdeal) -- Returns the generators of an NCLeftIdeal
-
generators(NCRightIdeal) -- Returns the generators of an NCRightIdeal
-
generators(NCRing) -- The list of algebra generators of an NCRing
-
hilbertBergman -- Calls Bergman to compute the Hilbert series of an NCQuotientRing
-
hilbertBergman(...,DegreeLimit=>...) -- Calls Bergman to compute the Hilbert series of an NCQuotientRing
-
hilbertBergman(NCQuotientRing) -- Calls Bergman to compute the Hilbert series of an NCQuotientRing
-
hilbertSeries(NCRing) -- Computes the Hilbert series of an NCRing
-
Hom(ZZ,NCMatrix,NCMatrix) -- Compute a graded component of Hom(M,N)
-
homogDual -- Computes the dual of a pure homogeneous ideal
-
homogDual(NCIdeal) -- Computes the dual of a pure homogeneous ideal
-
homogDual(NCQuotientRing) -- Computes the dual of a pure homogeneous ideal
-
homogDual(Ring) -- Computes the dual of a pure homogeneous ideal
-
ideal(NCPolynomialRing) -- The defining ideal of an NCPolynomialRing
-
ideal(NCQuotientRing) -- Defining ideal of an NCQuotientRing in its ambient ring
-
isCentral -- Determines if an element is central
-
isCentral(NCRingElement) -- Determines if an element is central
-
isCentral(NCRingElement,NCGroebnerBasis) -- Determines if an element is central
-
isCommutative(NCRing) -- Returns whether an NCRing is commutative
-
isConstant(NCRingElement) -- Returns whether the NCRingElement is constant
-
isExterior -- Returns whether an NCRing is commutative
-
isExterior(NCRing) -- Returns whether an NCRing is commutative
-
isExterior(Ring) -- Returns whether an NCRing is commutative
-
isHomogeneous(NCIdeal) -- Determines whether the input defines a homogeneous object
-
isHomogeneous(NCLeftIdeal) -- Determines whether the input defines a homogeneous object
-
isHomogeneous(NCMatrix) -- Determines whether the input defines a homogeneous object
-
isHomogeneous(NCRightIdeal) -- Determines whether the input defines a homogeneous object
-
isHomogeneous(NCRing) -- Determines whether the input defines a homogeneous object
-
isHomogeneous(NCRingElement) -- Determines whether the input defines a homogeneous object
-
isHomogeneous(NCRingMap) -- Determines if an NCRingMap preserves the natural grading
-
isLeftRegular -- Determines if a given (homogeneous) element is regular in a given degree
-
isLeftRegular(NCRingElement,ZZ) -- Determines if a given (homogeneous) element is regular in a given degree
-
isNormal(NCRingElement) -- Determines if a given NCRingElement is normal
-
isRightRegular -- Determines if a given (homogeneous) element is regular in a given degree
-
isRightRegular(NCRingElement,ZZ) -- Determines if a given (homogeneous) element is regular in a given degree
-
isWellDefined(NCRingMap) -- Determines if an NCRingMap is well-defined.
-
kernelComponent -- Computes a basis of the kernel of a ring map in a specified degree.
-
kernelComponent(ZZ,NCRingMap) -- Computes a basis of the kernel of a ring map in a specified degree.
-
leadCoefficient(NCRingElement) -- Returns the lead monomial of an NCRingElement
-
leadMonomial(NCRingElement) -- Returns the lead monomial of an NCRingElement
-
leadTerm(NCRingElement) -- Returns the lead term of an NCRingElement
-
leftMultiplicationMap -- Computes a matrix for left or right multiplication by a homogeneous element
-
leftMultiplicationMap(NCRingElement,List,List) -- Computes a matrix for left or right multiplication by a homogeneous element
-
leftMultiplicationMap(NCRingElement,ZZ) -- Computes a matrix for left or right multiplication by a homogeneous element
-
leftMultiplicationMap(NCRingElement,ZZ,ZZ) -- Computes a matrix for left or right multiplication by a homogeneous element
-
lift(NCMatrix) -- Lifts an NCMatrix
-
List * NCRingElement -- Scales a list by an NCRingElement on the right
-
List / NCRingMap -- Applies an NCRingMap to each element of a list
-
Matrix * NCMatrix -- Product of NCMatrices
-
matrix(NCRingMap) -- An NCMatrix associated to an NCRingMap.
-
minimizeRelations -- Minimizes a list of NCRingElements
-
minimizeRelations(...,Verbosity=>...) -- Minimizes a list of NCRingElements
-
minimizeRelations(List) -- Minimizes a list of NCRingElements
-
monomials(NCRingElement) -- Returns the monomials appearing in the NCRingElement
-
NCAlgebra
-
NCChainComplex -- Compute the resolution of coker M as a map of free right modules
-
NCGroebnerBasis -- Type of a Groebner basis for an NCIdeal in an NCRing.
-
ncGroebnerBasis -- Compute a noncommutative Groebner basis.
-
ncGroebnerBasis(...,InstallGB=>...) -- Compute a noncommutative Groebner basis.
-
ncGroebnerBasis(List) -- Compute a noncommutative Groebner basis.
-
ncGroebnerBasis(NCIdeal) -- Compute a noncommutative Groebner basis.
-
NCIdeal -- Type of a two-sided ideal in a noncommutative ring
-
ncIdeal -- Define a two-sided ideal in a noncommutative ring
-
NCIdeal + NCIdeal -- Sum of NCIdeals
-
ncIdeal(List) -- Define a two-sided ideal in a noncommutative ring
-
ncIdeal(NCRingElement) -- Define a two-sided ideal in a noncommutative ring
-
NCLeftIdeal -- Type of a left ideal in a noncommutative ring
-
ncLeftIdeal -- Define a left ideal in a noncommutative ring
-
NCLeftIdeal + NCLeftIdeal -- Sum of NCLeftIdeals
-
ncLeftIdeal(List) -- Define a left ideal in a noncommutative ring
-
ncLeftIdeal(NCRingElement) -- Define a left ideal in a noncommutative ring
-
ncMap -- Make a map to or from an NCRing
-
ncMap(...,Derivation=>...) -- Make a map to or from an NCRing
-
ncMap(NCRing,NCRing,List) -- Make a map to or from an NCRing
-
ncMap(NCRing,Ring,List) -- Make a map to or from an NCRing
-
ncMap(Ring,NCRing,List) -- Make a map to or from an NCRing
-
NCMatrix -- Type of a matrix over a noncommutative ring
-
ncMatrix -- Create an NCMatrix
-
NCMatrix % NCGroebnerBasis -- Reduces the entries of an NCMatrix with respect to an NCGroebnerBasis
-
NCMatrix * Matrix -- Product of NCMatrices
-
NCMatrix * NCMatrix -- Product of NCMatrices
-
NCMatrix * NCRingElement -- Product of NCMatrices
-
NCMatrix * QQ -- Product of NCMatrices
-
NCMatrix * RingElement -- Product of NCMatrices
-
NCMatrix * ZZ -- Product of NCMatrices
-
NCMatrix + NCMatrix -- Add NCMatrices
-
NCMatrix - NCMatrix -- Subtract NCMatrices
-
NCMatrix // NCMatrix -- Factor one map through another
-
NCMatrix == NCMatrix -- Test equality of matrices
-
NCMatrix == ZZ -- Test equality of matrices
-
NCMatrix ^ List -- Select some rows of an NCMatrix
-
NCMatrix ^ ZZ -- Exponentiate an NCMatrix
-
NCMatrix _ List -- Select some columns of an NCMatrix
-
NCMatrix _ ZZ -- Induced map in homogeneous degree n
-
NCMatrix | NCMatrix -- Join NCMatrices horizontally
-
NCMatrix || NCMatrix -- Join NCMatrices vertically
-
NCMatrix Array -- Graded shift of an NCMatrix.
-
ncMatrix(List) -- Create an NCMatrix
-
ncMatrix(NCRing,List,List) -- Create an NCMatrix
-
NCPolynomialRing -- Type of a noncommutative polynomial ring
-
NCPolynomialRing / NCIdeal -- Construct a NCQuotientRing
-
NCQuotientRing -- Type of a noncommutative ring
-
NCRightIdeal -- Type of a right ideal in a noncommutative ring
-
ncRightIdeal -- Define a right ideal in a noncommutative ring
-
NCRightIdeal + NCRightIdeal -- Sum of NCRightIdeals
-
ncRightIdeal(List) -- Define a right ideal in a noncommutative ring
-
ncRightIdeal(NCRingElement) -- Define a right ideal in a noncommutative ring
-
NCRing -- Type of a noncommutative ring
-
NCRing ** NCRing -- Define the (q-)commuting tensor product
-
NCRingElement -- Type of an element in a noncommutative ring
-
NCRingElement % NCGroebnerBasis -- Reduces a NCRingElement by a NCGroebnerBasis
-
NCRingElement * List -- Scales a list by an NCRingElement on the left
-
NCRingElement * NCMatrix -- Product of NCMatrices
-
NCRingMap -- Type of a map to or from a noncommutative ring.
-
NCRingMap + NCRingMap -- Basic operations with NCRingMaps
-
NCRingMap @@ NCRingMap -- Compose two NCRingMaps
-
NCRingMap ^ ZZ -- Basic operations with NCRingMaps
-
NCRingMap _ ZZ -- Matrix of one homogeneous component of an NCRingMap
-
NCRingMap NCGroebnerBasis -- Apply a ring map to the generators of an ideal
-
NCRingMap NCIdeal -- Apply a ring map to the generators of an ideal
-
NCRingMap NCMatrix -- Apply an NCRingMap to an element or matrix
-
NCRingMap NCRingElement -- Apply an NCRingMap to an element or matrix
-
NCRingMap RingElement -- Apply an NCRingMap to an element or matrix
-
normalAutomorphism -- Computes the automorphism determined by a normal homogeneous element
-
normalAutomorphism(NCRingElement) -- Computes the automorphism determined by a normal homogeneous element
-
normalElements -- Finds normal elements
-
normalElements(NCQuotientRing,ZZ,Symbol,Symbol) -- Finds normal elements
-
normalElements(NCRingMap,ZZ) -- Finds elements normalized by a ring map
-
normalFormBergman -- Calls Bergman for a normal form calculation
-
normalFormBergman(List,NCGroebnerBasis) -- Calls Bergman for a normal form calculation
-
normalFormBergman(NCRingElement,NCGroebnerBasis) -- Calls Bergman for a normal form calculation
-
numgens(NCRing) -- The number of algebra generators of an NCRing
-
oppositeRing -- Creates the opposite ring of a noncommutative ring
-
oppositeRing(NCRing) -- Creates the opposite ring of a noncommutative ring
-
oreExtension -- Creates an Ore extension of a noncommutative ring
-
oreExtension(NCRing,NCRingMap,NCRingElement) -- Creates an Ore extension of a noncommutative ring
-
oreExtension(NCRing,NCRingMap,NCRingMap,NCRingElement) -- Creates an Ore extension of a noncommutative ring
-
oreExtension(NCRing,NCRingMap,NCRingMap,Symbol) -- Creates an Ore extension of a noncommutative ring
-
oreExtension(NCRing,NCRingMap,Symbol) -- Creates an Ore extension of a noncommutative ring
-
oreIdeal -- Creates the defining ideal of an Ore extension of a noncommutative ring
-
oreIdeal(NCRing,NCRingMap,NCRingElement) -- Creates the defining ideal of an Ore extension of a noncommutative ring
-
oreIdeal(NCRing,NCRingMap,NCRingMap,NCRingElement) -- Creates the defining ideal of an Ore extension of a noncommutative ring
-
oreIdeal(NCRing,NCRingMap,NCRingMap,Symbol) -- Creates the defining ideal of an Ore extension of a noncommutative ring
-
oreIdeal(NCRing,NCRingMap,Symbol) -- Creates the defining ideal of an Ore extension of a noncommutative ring
-
QQ % NCGroebnerBasis -- Reduces a NCRingElement by a NCGroebnerBasis
-
QQ * NCMatrix -- Product of NCMatrices
-
QQ * NCRingMap -- Basic operations with NCRingMaps
-
qTensorProduct -- Define the (q-)commuting tensor product
-
qTensorProduct(NCRing,NCRing,QQ) -- Define the (q-)commuting tensor product
-
qTensorProduct(NCRing,NCRing,RingElement) -- Define the (q-)commuting tensor product
-
qTensorProduct(NCRing,NCRing,ZZ) -- Define the (q-)commuting tensor product
-
quadraticClosure -- Creates the subideal generated by quadratic elements of a given ideal
-
quadraticClosure(NCIdeal) -- Creates the subideal generated by quadratic elements of a given ideal
-
quadraticClosure(NCQuotientRing) -- Creates the subideal generated by quadratic elements of a given ideal
-
resolution(NCMatrix) -- Compute the resolution of coker M as a map of free right modules
-
rightKernel -- Method for computing kernels of matrices over noncommutative rings in a given degree without using Bergman
-
rightKernel(...,NumberOfBins=>...) -- Method for computing kernels of matrices over noncommutative rings in a given degree without using Bergman
-
rightKernel(...,Verbosity=>...) -- Method for computing kernels of matrices over noncommutative rings in a given degree without using Bergman
-
rightKernel(NCMatrix,ZZ) -- Method for computing kernels of matrices over noncommutative rings in a given degree without using Bergman
-
rightKernelBergman -- Methods for computing kernels of matrices over noncommutative rings using Bergman
-
rightKernelBergman(...,DegreeLimit=>...) -- Methods for computing kernels of matrices over noncommutative rings using Bergman
-
rightKernelBergman(NCMatrix) -- Methods for computing kernels of matrices over noncommutative rings using Bergman
-
rightKernelDegreeLimit -- Methods for computing kernels of matrices over noncommutative rings using Bergman
-
rightMultiplicationMap -- Computes a matrix for left or right multiplication by a homogeneous element
-
rightMultiplicationMap(NCRingElement,List,List) -- Computes a matrix for left or right multiplication by a homogeneous element
-
rightMultiplicationMap(NCRingElement,ZZ) -- Computes a matrix for left or right multiplication by a homogeneous element
-
rightMultiplicationMap(NCRingElement,ZZ,ZZ) -- Computes a matrix for left or right multiplication by a homogeneous element
-
ring(NCGroebnerBasis) -- Returns the ring of an NCIdeal or NCGroebnerBasis
-
ring(NCIdeal) -- Returns the ring of an NCIdeal or NCGroebnerBasis
-
ring(NCLeftIdeal) -- Returns the ring of an NCLeftIdeal
-
ring(NCMatrix) -- Gives the ring of the NCMatrix
-
ring(NCRightIdeal) -- Returns the ring of an NCRightIdeal
-
ring(NCRingElement) -- Returns the NCRing of an NCRingElement
-
RingElement * NCMatrix -- Product of NCMatrices
-
RingElement * NCRingMap -- Basic operations with NCRingMaps
-
setWeights -- Set a nonstandard grading for a NCRing.
-
setWeights(NCRing,List) -- Set a nonstandard grading for a NCRing.
-
size(NCRingElement) -- Returns the number of terms of an NCRingElement
-
skewPolynomialRing -- Defines a skew polynomial ring via a skewing matrix
-
skewPolynomialRing(Ring,Matrix,List) -- Defines a skew polynomial ring via a skewing matrix
-
skewPolynomialRing(Ring,QQ,List) -- Defines a skew polynomial ring via a scaling factor
-
skewPolynomialRing(Ring,RingElement,List) -- Defines a skew polynomial ring via a scaling factor
-
skewPolynomialRing(Ring,ZZ,List) -- Defines a skew polynomial ring via a scaling factor
-
source(NCRingMap) -- Source of a map
-
sparseCoeffs -- Converts ring elements into vectors over the coefficient ring
-
sparseCoeffs(...,Monomials=>...) -- Converts ring elements into vectors over the coefficient ring
-
sparseCoeffs(List) -- Converts ring elements into vectors over the coefficient ring
-
sparseCoeffs(NCRingElement) -- Converts ring elements into vectors over the coefficient ring
-
support(NCRingElement) -- Returns the variables appearing in the NCRingElement
-
target(NCRingMap) -- Target of a map
-
terms(NCRingElement) -- Returns the terms of an NCRingElement
-
threeDimSklyanin -- Defines a three-dimensional Sklyanin with given parameters
-
threeDimSklyanin(Ring,List) -- Defines a three-dimensional Sklyanin with given parameters
-
threeDimSklyanin(Ring,List,List) -- Defines a three-dimensional Sklyanin with given parameters
-
toM2Ring -- Compute the abelianization of an NCRing and returns a Ring.
-
toM2Ring(...,SkewCommutative=>...) -- Compute the abelianization of an NCRing and returns a Ring.
-
toM2Ring(NCRing) -- Compute the abelianization of an NCRing and returns a Ring.
-
toNCRing -- Converts a Ring to an NCRing
-
toNCRing(Ring) -- Converts a Ring to an NCRing
-
toString(NCRingElement) -- Converts an NCRingElement to a string
-
transpose(NCMatrix) -- Transposes an NCMatrix
-
twoSidedNCGroebnerBasisBergman -- Calls Bergman to compute a two sided noncommutative Groebner Basis.
-
twoSidedNCGroebnerBasisBergman(...,CacheBergmanGB=>...) -- Calls Bergman to compute a two sided noncommutative Groebner Basis.
-
twoSidedNCGroebnerBasisBergman(...,DegreeLimit=>...) -- Calls Bergman to compute a two sided noncommutative Groebner Basis.
-
twoSidedNCGroebnerBasisBergman(...,MakeMonic=>...) -- Calls Bergman to compute a two sided noncommutative Groebner Basis.
-
twoSidedNCGroebnerBasisBergman(...,NumModuleVars=>...) -- Calls Bergman to compute a two sided noncommutative Groebner Basis.
-
twoSidedNCGroebnerBasisBergman(List) -- Calls Bergman to compute a two sided noncommutative Groebner Basis.
-
twoSidedNCGroebnerBasisBergman(NCIdeal) -- Calls Bergman to compute a two sided noncommutative Groebner Basis.
-
use(NCRing) -- Brings the variables of a particular NCRing in scope
-
Using the Bergman interface
-
ZZ % NCGroebnerBasis -- Reduces a NCRingElement by a NCGroebnerBasis
-
ZZ * NCMatrix -- Product of NCMatrices
-
ZZ * NCRingMap -- Basic operations with NCRingMaps
-
ZZ == NCMatrix -- Test equality of matrices