top
|
toc
|
Macaulay2 website
MultiplicitySequence : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
DoSaturate
-- the Hilbert sequence of a multi-graded module
grGr
-- the bigraded ring Gr_m(Gr_I(R))
grGr(Ideal)
-- the bigraded ring Gr_m(Gr_I(R))
grGr(Ideal,Ideal)
-- the bigraded ring Gr_m(Gr_I(R))
hilbertSequence
-- the Hilbert sequence of a multi-graded module
hilbertSequence(...,DoSaturate=>...)
-- the Hilbert sequence of a multi-graded module
hilbertSequence(Ideal)
-- the Hilbert sequence of a multi-graded module
hilbertSequence(Module)
-- the Hilbert sequence of a multi-graded module
hilbertSequence(Ring)
-- the Hilbert sequence of a multi-graded module
jMult
-- the j-multiplicity of an ideal
jMult(Ideal)
-- the j-multiplicity of an ideal
minTerms
-- the multiplicity sequence of an ideal
monAnalyticSpread
-- the analytic spread of a monomial ideal
monAnalyticSpread(Ideal)
-- the analytic spread of a monomial ideal
monjMult
-- j-multiplicity of a monomial ideal
monjMult(Ideal)
-- j-multiplicity of a monomial ideal
monReduction
-- the minimal monomial reduction of a monomial ideal
monReduction(Ideal)
-- the minimal monomial reduction of a monomial ideal
MultiplicitySequence
-- multiplicity sequence of ideals
multiplicitySequence
-- the multiplicity sequence of an ideal
multiplicitySequence(...,DoSaturate=>...)
-- the Hilbert sequence of a multi-graded module
multiplicitySequence(...,minTerms=>...)
-- the multiplicity sequence of an ideal
multiplicitySequence(...,numCandidates=>...)
-- the multiplicity sequence of an ideal
multiplicitySequence(...,Strategy=>...)
-- the multiplicity sequence of an ideal
multiplicitySequence(Ideal)
-- the multiplicity sequence of an ideal
multiplicitySequence(ZZ,Ideal)
-- the multiplicity sequence of an ideal
NP
-- the Newton polyhedron of a monomial ideal
NP(Ideal)
-- the Newton polyhedron of a monomial ideal
numCandidates
-- the multiplicity sequence of an ideal
printHilbertSequence
-- prints the Hilbert sequence as a table
printHilbertSequence(HashTable)
-- prints the Hilbert sequence as a table