Description
Declares that the columns of the matrix
f constitute a Gröbner basis, autoreduces it, minimizes it, sorts it, and returns a Gröbner basis object declaring itself complete, without computing any S-pairs.
Sometimes one knows that a set of polynomials (or columns of such) form a Gröbner basis, but
Macaulay2 doesn't. This is the way to inform the system of this fact.
i1 : gbTrace = 3;
|
i2 : R = ZZ[x,y,z];
-- registering polynomial ring 3 at 0x7f7b18d5c400
|
i3 : f = matrix{{x^2-3, y^3-1, z^4-2}};
1 3
o3 : Matrix R <--- R
|
i4 : g = forceGB f
o4 = GroebnerBasis[status: done; S-pairs encountered up to degree 0]
o4 : GroebnerBasis
|
This Gröbner basis object is stored with the matrix and can be obtained as usual:
i5 : g === gb(f, StopBeforeComputation=>true)
o5 = true
|
Requesting a Gröbner basis for
f requires no computation.
i6 : gens gb f
o6 = | x2-3 y3-1 z4-2 |
1 3
o6 : Matrix R <--- R
|
If an autoreduced Gröbner basis is desired, replace f by gens forceGB f first.