next
|
previous
|
forward
|
backward
| up |
top
|
index
|
toc
|
Macaulay2 website
Macaulay2Doc
::
dim
dim -- compute the Krull dimension
Caveat
To compute the dimension of a vector space, one should use
rank
.
Over the integers, the computation effectively tensors first with the rational numbers, yielding the wrong answer in some cases.
See also
codim
-- compute the codimension
Ways to use
dim
:
dim(AffineVariety)
-- dimension of the affine variety
dim(Ideal)
-- compute the Krull dimension
"dim(MonomialIdeal)"
-- see
dim(Ideal)
-- compute the Krull dimension
dim(Module)
-- compute the Krull dimension
dim(ProjectiveHilbertPolynomial)
-- the degree of the Hilbert polynomial
dim(ProjectiveVariety)
-- dimension of the projective variety
"dim(FractionField)"
-- see
dim(Ring)
-- compute the Krull dimension
"dim(GaloisField)"
-- see
dim(Ring)
-- compute the Krull dimension
"dim(InexactField)"
-- see
dim(Ring)
-- compute the Krull dimension
"dim(PolynomialRing)"
-- see
dim(Ring)
-- compute the Krull dimension
"dim(QuotientRing)"
-- see
dim(Ring)
-- compute the Krull dimension
dim(Ring)
-- compute the Krull dimension
For the programmer
The object
dim
is
a
method function
.