Let $k$ be a field, $S$ a $\ZZ^r$-graded polynomial ring over $k$, and $M$ a finitely generated, $\ZZ^r$-graded $S$-module. Write $M_{\geq d}$ for the truncation $\oplus_{d'\geq d} M_d'$ of $M$ at $d$ (where $d'\geq d$ if $d'_i\geq d_i$ for all $i$). The main purpose of this package is to find the degrees $d\in\ZZ^r$ so that $M_{\geq d}$ has a linear resolution, i.e. satisfies the function isLinearComplex. No sufficient finite search space is known, so the result may not be complete.
|
|
|
|
|
|
|
If $M_{\geq d}$ has a linear truncation then $M_{\geq d'}$ has a linear truncation for all $d'\geq d$, so the function linearTruncations gives the minimal such multidegrees in a given range, using the function findRegion. The functions linearTruncationsBound and regularityBound estimate the linear truncation region and the multigraded regularity region of $M$, respectively, without calculating cohomology or truncations.
If the ring $S$ is standard $\ZZ$-graded then $M_{\geq d}$ has a linear resolution if and only if $d\geq\operatorname{reg} M$, where $\operatorname{reg} M$ is the Castelnuovo-Mumford regularity of $M$.
This documentation describes version 1.0 of LinearTruncations.
The source code from which this documentation is derived is in the file LinearTruncations.m2.
The object LinearTruncations is a package.