LieTypes : Index
-
casimirScalar -- computes the scalar by which the Casimir operator acts on an irreducible Lie algebra module
-
casimirScalar(LieAlgebraModule) -- computes the scalar by which the Casimir operator acts on an irreducible Lie algebra module
-
casimirScalar(String,ZZ,List) -- computes the scalar by which the Casimir operator acts on an irreducible Lie algebra module
-
dim(LieAlgebraModule) -- computes the dimension of a Lie algebra module as a vector space over the ground field
-
dualCoxeterNumber -- returns the dual Coxeter number of a simple Lie algebra
-
dualCoxeterNumber(LieAlgebra) -- returns the dual Coxeter number of a simple Lie algebra
-
dualCoxeterNumber(String,ZZ) -- returns the dual Coxeter number of a simple Lie algebra
-
fusionCoefficient -- computes the multiplicity of W in the fusion product of U and V
-
fusionCoefficient(...,MaxWordLength=>...) -- Optional argument to specify the allowable length of words in the affine Weyl group when computing fusion products.
-
fusionCoefficient(LieAlgebraModule,LieAlgebraModule,LieAlgebraModule,ZZ) -- computes the multiplicity of W in the fusion product of U and V
-
fusionProduct -- computes the multiplicities of irreducibles in the decomposition of the fusion product of U and V
-
fusionProduct(...,MaxWordLength=>...) -- Optional argument to specify the allowable length of words in the affine Weyl group when computing fusion products.
-
fusionProduct(LieAlgebraModule,LieAlgebraModule,ZZ) -- computes the multiplicities of irreducibles in the decomposition of the fusion product of U and V
-
highestRoot -- returns the highest root of a simple Lie algebra
-
highestRoot(LieAlgebra) -- returns the highest root of a simple Lie algebra
-
highestRoot(String,ZZ) -- returns the highest root of a simple Lie algebra
-
irreducibleLieAlgebraModule -- construct the irreducible Lie algebra module with given highest weight
-
irreducibleLieAlgebraModule(List,LieAlgebra) -- construct the irreducible Lie algebra module with given highest weight
-
isIsomorphic -- tests whether two Lie algebra modules are isomorphic
-
isIsomorphic(LieAlgebraModule,LieAlgebraModule) -- tests whether two Lie algebra modules are isomorphic
-
KillingForm -- computes the scaled Killing form applied to two weights
-
KillingForm(LieAlgebra,List,List) -- computes the scaled Killing form applied to two weights
-
KillingForm(String,ZZ,List,List) -- computes the scaled Killing form applied to two weights
-
LieAlgebra -- class for Lie algebras
-
LieAlgebra == LieAlgebra -- tests equality of LieAlgebra
-
LieAlgebraModule -- class for Lie algebra modules
-
LieAlgebraModule ** LieAlgebraModule -- tensor product of LieAlgebraModules
-
LieAlgebraModule ++ LieAlgebraModule -- direct sum of LieAlgebraModules
-
LieTypes -- Common types for Lie groups and Lie algebras
-
MaxWordLength -- Optional argument to specify the allowable length of words in the affine Weyl group when computing fusion products.
-
multiplicity(List,LieAlgebraModule) -- compute the multiplicity of a weight in a Lie algebra module
-
positiveRoots -- returns the positive roots of a simple Lie algebra
-
positiveRoots(LieAlgebra) -- returns the positive roots of a simple Lie algebra
-
positiveRoots(String,ZZ) -- returns the positive roots of a simple Lie algebra
-
simpleLieAlgebra -- construct a simple Lie algebra
-
simpleLieAlgebra(String,ZZ) -- construct a simple Lie algebra
-
starInvolution -- computes w* for a weight w
-
starInvolution(List,LieAlgebra) -- computes w* for a weight w
-
starInvolution(String,ZZ,List) -- computes w* for a weight w
-
tensorCoefficient -- computes the multiplicity of W in U tensor V
-
tensorCoefficient(LieAlgebraModule,LieAlgebraModule,LieAlgebraModule) -- computes the multiplicity of W in U tensor V
-
weightDiagram -- computes the weights in a Lie algebra module and their multiplicities
-
weightDiagram(LieAlgebraModule) -- computes the weights in a Lie algebra module and their multiplicities
-
weightDiagram(String,ZZ,List) -- computes the weights in a Lie algebra module and their multiplicities
-
weylAlcove -- the dominant integral weights of level less than or equal to l
-
weylAlcove(String,ZZ,ZZ) -- the dominant integral weights of level less than or equal to l
-
weylAlcove(ZZ,LieAlgebra) -- the dominant integral weights of level less than or equal to l