top
|
toc
|
Macaulay2 website
InverseSystems : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
DividedPowers
-- Option for inverseSystem
fromDividedPowers
-- Translates from divided power monomial basis to ordinary monomial basis
fromDividedPowers(Matrix)
-- Translates from divided power monomial basis to ordinary monomial basis
fromDividedPowers(RingElement)
-- Translates from divided power monomial basis to ordinary monomial basis
fromDual
-- Ideal from inverse system
fromDual(...,DividedPowers=>...)
-- Ideal from inverse system
fromDual(Matrix)
-- Ideal from inverse system
fromDual(RingElement)
-- Ideal from inverse system
Gorenstein
-- Constructing Gorenstein Rings and Modules
inverseSystem
-- Inverse systems with equivariance
inverseSystem(...,DividedPowers=>...)
-- Inverse systems with equivariance
inverseSystem(Ideal)
-- Inverse systems with equivariance
inverseSystem(Matrix)
-- Inverse systems with equivariance
inverseSystem(RingElement)
-- Inverse systems with equivariance
inverseSystem(ZZ,Ideal)
-- Inverse systems with equivariance
inverseSystem(ZZ,Matrix)
-- Inverse systems with equivariance
InverseSystems
-- Macaulay's Inverse Systems
isStandardGradedPolynomialRing
-- Checks whether a ring is a polynomial ring over a field with variables of degree 1
isStandardGradedPolynomialRing(Ring)
-- Checks whether a ring is a polynomial ring over a field with variables of degree 1
toDividedPowers
-- Translates to divided power monomial basis from ordinary monomial basis
toDividedPowers(Matrix)
-- Translates to divided power monomial basis from ordinary monomial basis
toDividedPowers(RingElement)
-- Translates to divided power monomial basis from ordinary monomial basis
toDual
-- finds the inverse system to an ideal up to a given degree
toDual(...,DividedPowers=>...)
-- finds the inverse system to an ideal up to a given degree
toDual(ZZ,Ideal)
-- finds the inverse system to an ideal up to a given degree
toDual(ZZ,Matrix)
-- finds the inverse system to an ideal up to a given degree