GradedLieAlgebras : Index
-
- ExtElement -- unary negation
-
- LieAlgebraMap -- unary negation
-
- LieDerivation -- unary negation
-
- LieElement -- unary negation
-
ambient(LieAlgebra) -- get the ambient Lie algebra
-
annihilator(FGLieSubAlgebra) -- make the annihilator Lie subalgebra
-
basis(List,ExtAlgebra) -- compute a basis
-
basis(List,LieAlgebra) -- compute a basis
-
basis(List,VectorSpace) -- compute a basis
-
basis(ZZ,ExtAlgebra) -- compute a basis
-
basis(ZZ,LieAlgebra) -- compute a basis
-
basis(ZZ,VectorSpace) -- compute a basis
-
basis(ZZ,ZZ,ExtAlgebra) -- compute a basis
-
basis(ZZ,ZZ,LieAlgebra) -- compute a basis
-
basis(ZZ,ZZ,VectorSpace) -- compute a basis
-
boundaries -- make the subalgebra of boundaries
-
boundaries(LieAlgebra) -- make the subalgebra of boundaries
-
center -- make the ideal of central elements
-
center(LieAlgebra) -- make the ideal of central elements
-
coefficients(LieElement) -- get the coefficients and monomials of a Lie element
-
computedDegree -- get the degree to which the computations have been performed
-
computedDegree(ExtAlgebra) -- get the degree to which the computations have been performed
-
computedDegree(LieAlgebra) -- get the degree to which the computations have been performed
-
cycles -- make the subalgebra of cycles
-
cycles(LieAlgebra) -- make the subalgebra of cycles
-
decompose(LieAlgebra) -- compute the ideal associated to an arrangement or matroid
-
degreeLength(LieAlgebra) -- get the length of the weight of a generator
-
describe(ExtAlgebra) -- real description
-
describe(LieAlgebra) -- real description
-
describe(LieAlgebraMap) -- real description
-
describe(LieDerivation) -- real description
-
describe(VectorSpace) -- real description
-
diff(LieAlgebra) -- get the differential of the generators
-
differential -- make the derivation defined by the differential
-
Differential Lie algebra tutorial
-
differentialLieAlgebra -- make a differential Lie algebra
-
differentialLieAlgebra(List) -- make a differential Lie algebra
-
dim(List,ExtAlgebra) -- compute the dimension
-
dim(List,LieAlgebra) -- compute the dimension
-
dim(List,VectorSpace) -- compute the dimension
-
dim(ZZ,ExtAlgebra) -- compute the dimension
-
dim(ZZ,LieAlgebra) -- compute the dimension
-
dim(ZZ,VectorSpace) -- compute the dimension
-
dim(ZZ,ZZ,ExtAlgebra) -- compute the dimension
-
dim(ZZ,ZZ,LieAlgebra) -- compute the dimension
-
dim(ZZ,ZZ,VectorSpace) -- compute the dimension
-
dims -- compute the dimensions of a Lie algebra, Ext-algebra or vector space
-
dims(ZZ,ExtAlgebra) -- compute the dimensions of a Lie algebra, Ext-algebra or vector space
-
dims(ZZ,LieAlgebra) -- compute the dimensions of a Lie algebra, Ext-algebra or vector space
-
dims(ZZ,VectorSpace) -- compute the dimensions of a Lie algebra, Ext-algebra or vector space
-
dims(ZZ,ZZ,ExtAlgebra) -- compute the dimensions of a Lie algebra, Ext-algebra or vector space
-
dims(ZZ,ZZ,LieAlgebra) -- compute the dimensions of a Lie algebra, Ext-algebra or vector space
-
dims(ZZ,ZZ,VectorSpace) -- compute the dimensions of a Lie algebra, Ext-algebra or vector space
-
euler(LieAlgebra) -- compute the Euler derivation
-
eulers(ZZ,LieAlgebra) -- compute the list of Euler characteristics
-
ExtAlgebra -- the class of all Ext-algebras
-
extAlgebra -- compute the Ext-algebra of a Lie algebra
-
extAlgebra(ZZ,LieAlgebra) -- compute the Ext-algebra of a Lie algebra
-
ExtElement -- the class of all Ext-algebra elements
-
ExtElement + ExtElement -- addition of Ext-algebra elements
-
ExtElement - ExtElement -- subtraction of Ext-algebra elements
-
ExtElement ExtElement -- multiplication of Ext-algebra elements
-
FGLieIdeal -- the class of all finitely generated Lie ideals
-
FGLieSubAlgebra -- the class of all finitely generated Lie subalgebras
-
Field -- name for an optional argument for lieAlgebra and holonomy
-
First Lie algebra tutorial
-
firstDegree -- get the degree of an element
-
firstDegree(ExtElement) -- get the degree of an element
-
firstDegree(LieDerivation) -- get the degree of an element
-
firstDegree(LieElement) -- get the degree of an element
-
generators(ExtAlgebra) -- get the generators
-
generators(LieAlgebra) -- get the generators
-
generators(LieSubSpace) -- get the generators
-
GradedLieAlgebras -- a package for doing computations in graded Lie algebras
-
holonomy -- compute the holonomy Lie algebra associated to an arrangement or matroid
-
Holonomy Lie algebras and symmetries
-
holonomy(...,Field=>...) -- optional argument for holonomy
-
holonomy(List) -- compute the holonomy Lie algebra associated to an arrangement or matroid
-
holonomy(List,List) -- compute the holonomy Lie algebra associated to an arrangement or matroid
-
holonomyLocal -- compute the Lie algebra for a local subalgebra of the holonomy Lie algebra
-
holonomyLocal(ZZ,LieAlgebra) -- compute the Lie algebra for a local subalgebra of the holonomy Lie algebra
-
Homomorphisms and derivations
-
ideal(LieAlgebra) -- get the relations in a Lie algebra
-
image(LieAlgebraMap) -- make the image of a Lie algebra map
-
image(LieAlgebraMap,LieSubSpace) -- make the image of a Lie subspace under a Lie algebra map
-
image(LieDerivation) -- make the image of a Lie derivation
-
image(LieDerivation,LieSubSpace) -- make the image of a Lie subspace under a Lie derivation
-
indexForm -- get a Lie element in the polynomial ring representation
-
indexForm(LieElement) -- get a Lie element in the polynomial ring representation
-
innerDerivation -- make the derivation defined by right Lie multiplication by a Lie element
-
innerDerivation(LieElement) -- make the derivation defined by right Lie multiplication by a Lie element
-
inverse(LieAlgebraMap,LieSubSpace) -- make the inverse image of a Lie subspace under a Lie algebra map
-
inverse(LieDerivation,LieSubSpace) -- make the inverse image of a Lie subspace under a Lie derivation
-
isIsomorphism(LieAlgebraMap) -- whether a Lie map is an isomorphism
-
isSurjective(LieAlgebraMap) -- whether a Lie map is surjective
-
isWellDefined(ZZ,LieAlgebraMap) -- whether a Lie map is well defined
-
isWellDefined(ZZ,LieDerivation) -- whether a Lie derivation is well defined
-
kernel(LieAlgebraMap) -- make the kernel of a map
-
kernel(LieDerivation) -- make the kernel of a map
-
koszulDual -- compute the Lie algebra whose enveloping algebra is the Koszul dual of a quadratic algebra
-
koszulDual(PolynomialRing) -- compute the Lie algebra whose enveloping algebra is the Koszul dual of a quadratic algebra
-
koszulDual(QuotientRing) -- compute the Lie algebra whose enveloping algebra is the Koszul dual of a quadratic algebra
-
LastWeightHomological -- name for an optional argument for lieAlgebra
-
LieAlgebra -- the class of all Lie algebras
-
lieAlgebra -- make a free Lie algebra
-
LieAlgebra * LieAlgebra -- free product of Lie algebras
-
LieAlgebra ++ LieAlgebra -- direct sum of Lie algebras
-
LieAlgebra / LieAlgebraMap -- make a quotient Lie algebra
-
LieAlgebra / LieIdeal -- make a quotient Lie algebra
-
LieAlgebra / List -- make a quotient Lie algebra
-
LieAlgebra == LieAlgebra -- whether two Lie algebras are defined in the same way
-
lieAlgebra(...,Field=>...) -- optional argument for lieAlgebra
-
lieAlgebra(...,LastWeightHomological=>...) -- optional argument for lieAlgebra
-
lieAlgebra(...,Signs=>...) -- optional argument for lieAlgebra
-
lieAlgebra(...,Weights=>...) -- optional argument for lieAlgebra
-
lieAlgebra(List) -- make a free Lie algebra
-
LieAlgebraMap -- the class of all Lie algebra homomorphisms
-
LieAlgebraMap * LieAlgebraMap -- composition of homomorphisms
-
LieAlgebraMap * LieDerivation -- composition of a homomorphism and a derivation
-
LieAlgebraMap + LieAlgebraMap -- addition of Lie homomorphisms
-
LieAlgebraMap - LieAlgebraMap -- subtraction of Lie homomorphisms
-
LieAlgebraMap == LieAlgebraMap -- whether two Lie algebra homomorphisms are defined in the same way
-
LieAlgebraMap @ LieElement -- formal application of a Lie map to a Lie element
-
LieAlgebraMap \ List -- apply a Lie homomorphism to every element in a list
-
LieAlgebraMap \\ List -- formal application of a Lie map to every element in a list
-
LieAlgebraMap LieElement -- apply a Lie homomorphism
-
LieDerivation -- the class of all Lie algebra derivations
-
lieDerivation -- make a graded derivation
-
LieDerivation * LieAlgebraMap -- composition of a derivation and a homomorphism
-
LieDerivation + LieDerivation -- addition of Lie derivations
-
LieDerivation - LieDerivation -- subtraction of Lie derivations
-
LieDerivation @ LieElement -- formal application of a derivation to a Lie element
-
LieDerivation \ List -- apply a derivation to every element in a list
-
LieDerivation \\ List -- formal application of a derivation to every element in a list
-
LieDerivation LieDerivation -- Lie multiplication of ordinary derivations
-
LieDerivation LieElement -- apply a derivation
-
lieDerivation(LieAlgebraMap,List) -- make a graded derivation
-
lieDerivation(List) -- make a graded derivation
-
LieElement -- the class of all Lie algebra elements
-
LieElement + LieElement -- addition of Lie elements
-
LieElement ++ LieElement -- formal addition of Lie elements
-
LieElement - LieElement -- subtraction of Lie elements
-
LieElement / LieElement -- formal subtraction of Lie elements
-
LieElement @ LieElement -- formal multiplication of Lie elements
-
LieElement LieElement -- multiplication of Lie elements
-
lieHomology -- make the homology as a vector space
-
lieHomology(LieAlgebra) -- make the homology as a vector space
-
LieIdeal -- the class of all Lie ideals
-
lieIdeal -- make a Lie ideal
-
lieIdeal(LieSubSpace) -- make a Lie ideal
-
lieIdeal(List) -- make a Lie ideal
-
lieRing -- get the internal ring for representation of Lie elements
-
LieSubAlgebra -- the class of all Lie subalgebras
-
lieSubAlgebra -- make a Lie subalgebra
-
lieSubAlgebra(List) -- make a Lie subalgebra
-
LieSubSpace -- the class of all Lie subspaces
-
lieSubSpace -- make a Lie subspace
-
LieSubSpace + LieSubSpace -- make the sum of two Lie subspaces
-
LieSubSpace @ LieSubSpace -- make the intersection of two Lie subspaces
-
lieSubSpace(List) -- make a Lie subspace
-
listMultiply -- multiplication of lists
-
map(LieAlgebra) -- get the map of a minimal model
-
map(LieAlgebra,LieAlgebra) -- make a natural Lie algebra homomorphism
-
map(LieAlgebra,LieAlgebra,List) -- make a Lie algebra homomorphism
-
map(LieDerivation) -- get the map in the definition of a Lie derivation
-
mbRing -- a polynomial ring representation of the Lie algebra used for output
-
member(LieElement,LieSubSpace) -- whether a Lie element belongs to a Lie subspace
-
Minimal models, Ext-algebras and Koszul duals
-
minimalModel -- compute the minimal model
-
minimalModel(ZZ,LieAlgebra) -- compute the minimal model
-
minimalPresentation(ZZ,LieAlgebra) -- compute a minimal presentation
-
monomials(LieElement) -- get the monomials of a Lie element
-
normalForm -- compute the normal form of a LieElement
-
normalForm(LieElement) -- compute the normal form of a LieElement
-
Number @ LieElement -- formal multiplication of a number and a Lie element
-
Number ExtElement -- multiplication of a number and an Ext-algebra element
-
Number LieAlgebraMap -- multiplication of a number and a homomorphism
-
Number LieDerivation -- multiplication of a number and a derivation
-
Number LieElement -- multiplication of a number and a Lie element
-
numgens(LieAlgebra) -- get the number of generators
-
Quotient Lie algebras and subspaces
-
quotient(LieIdeal,FGLieSubAlgebra) -- make the quotient of a Lie ideal by a finitely generated Lie subalgebra
-
random(List,LieAlgebra) -- get a random element of a Lie algebra
-
random(ZZ,LieAlgebra) -- get a random element of a Lie algebra
-
random(ZZ,ZZ,LieAlgebra) -- get a random element of a Lie algebra
-
RingElement @ LieElement -- formal multiplication of a ring element and a Lie element
-
RingElement ExtElement -- multiplication of a field element and a Ext-algebra element
-
RingElement LieAlgebraMap -- multiplication of a field element and a homomorphism
-
RingElement LieDerivation -- multiplication of a field element and a derivation
-
RingElement LieElement -- multiplication of a field element and a Lie element
-
ScriptedFunctor _ LieAlgebra -- get the identity homomorphism
-
Second Lie algebra tutorial
-
sign -- get the sign of a homogeneous element
-
sign(ExtElement) -- get the sign of a homogeneous element
-
sign(LieDerivation) -- get the sign of a homogeneous element
-
sign(LieElement) -- get the sign of a homogeneous element
-
Signs -- name for an optional argument for lieAlgebra
-
source(LieAlgebraMap) -- get the source of a map
-
source(LieDerivation) -- get the source of a map
-
standardForm(List,LieAlgebra) -- get a Lie element in standard form
-
standardForm(RingElement,LieAlgebra) -- get a Lie element in standard form
-
target(LieAlgebraMap) -- get the target of a map
-
target(LieDerivation) -- get the target of a map
-
trace(ZZ,LieSubSpace,LieAlgebraMap) -- compute the trace of a Lie algebra map acting on a Lie subspace
-
use(LieAlgebra) -- set the generators
-
VectorSpace -- the class of all vector spaces
-
weight -- get the weight of a homogeneous element
-
weight(ExtElement) -- get the weight of a homogeneous element
-
weight(LieDerivation) -- get the weight of a homogeneous element
-
weight(LieElement) -- get the weight of a homogeneous element
-
zeroDerivation -- make a derivation from the zero map
-
zeroDerivation(LieAlgebra) -- make a derivation from the zero map
-
zeroIdeal -- make the zero ideal
-
zeroIdeal(LieAlgebra) -- make the zero ideal
-
zeroMap -- make the zero map
-
zeroMap(LieAlgebra,LieAlgebra) -- make the zero map
-
ZZ _ ExtAlgebra -- get the zero element
-
ZZ _ LieAlgebra -- get the zero element