i1 : Gr24 = generalizedFlagVariety("A",3,{2}); the Grassmannian of projective lines in projective 3space

i2 : O1 = ampleKClass Gr24  the O(1) bundle on Gr24 as an equivariant Kclass
o2 = an "equivariant Kclass" on a GKM variety
o2 : KClass

i3 : O2 = O1^2
o3 = an "equivariant Kclass" on a GKM variety
o3 : KClass

i4 : peek O2
o4 = KClass{variety => a "GKM variety" with an action of a 4dimensional torus}
2 2
KPolynomials => HashTable{{set {0, 1}} => T T }
0 1
2 2
{set {0, 2}} => T T
0 2
2 2
{set {0, 3}} => T T
0 3
2 2
{set {1, 2}} => T T
1 2
2 2
{set {1, 3}} => T T
1 3
2 2
{set {2, 3}} => T T
2 3

i5 : Oneg1 = O1^(1)
o5 = an "equivariant Kclass" on a GKM variety
o5 : KClass

i6 : peek Oneg1
o6 = KClass{variety => a "GKM variety" with an action of a 4dimensional torus}
1 1
KPolynomials => HashTable{{set {0, 1}} => T T }
0 1
1 1
{set {0, 2}} => T T
0 2
1 1
{set {0, 3}} => T T
0 3
1 1
{set {1, 2}} => T T
1 2
1 1
{set {1, 3}} => T T
1 3
1 1
{set {2, 3}} => T T
2 3
