A toric variety is an integral variety containing an open dense algebraic torus. If the toric variety is smooth (or simplicial) it is naturally a GKM variety: Let $X$ be a smooth toric variety and $U$ be an affine chart whose associated character lattice is generated by elements of weights $a_1,\dots, a_m$. Then $(\mathbb C^*)^n$ acts on $U$ by $t \cdot (x_1,\dots, x_n) = (t^{a_1}x_1,\dots, t^{a_n}x_n)$. We caution that this package uses the outer normals instead of inner normals.
The method normalToricVariety from the package NormalToricVarieties allows the user to construct smooth toric varieties. To convert it to a GKM variety we use the method makeGKMVariety. Here is an example with $X = Bl_p\mathbb P^2$, the blowup of $\mathbb P^2$ at a point, which is also the first Hirzebruch surface.




If a GKM variety $X$ was originally constructed from normalToricVariety we can convert it back to a toric variety.


Continuing this example, the following shows how to convert a torusinvariant divisor constructed using ToricDivisor to a KClass.



Since the toric variety $X = Bl_p\mathbb P^2$ is Gorenstein Fano, with its anticanonical embedding in $\mathbb P^8$, the equivariant Euler characteristic of the anticanonical divisor is the sum of the characters of the sections of the associated line bundle.

We caution the following difference in convention: Projective $n$space $\mathbb P^n$ as a NormalToricVariety constructed using toricProjectiveSpace is acted upon by an $n$dimensional torus. However, as a GKMVariety constructed using projectiveSpace, it is acted upon by an $(n+1)$dimensional torus.



