FrobeniusThresholds : Index
-
Bounds -- an option for the function fpt specifying lower and upper bounds for the F-pure threshold
-
compareFPT -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(...,AssumeDomain=>...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(...,AtOrigin=>...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(...,FrobeniusRootStrategy=>...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(...,MaxCartierIndex=>...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(...,QGorensteinIndex=>...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(...,Verbose=>...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(Number,RingElement) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
ContainmentTest -- an option for the function frobeniusNu specifying the type of containment of powers of ideals to test
-
FinalAttempt -- an option for the function fpt to perform a final check attempting find an F-pure threshold
-
fpt -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(...,AtOrigin=>...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(...,Attempts=>...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(...,Bounds=>...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(...,DepthOfSearch=>...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(...,FinalAttempt=>...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(...,GuessStrategy=>...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(...,UseSpecialAlgorithms=>...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(...,Verbose=>...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(List,List) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(RingElement) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
frobeniusNu -- computes the largest power of an ideal not contained in a specified Frobenius power
-
frobeniusNu(...,AtOrigin=>...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
frobeniusNu(...,ContainmentTest=>...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
frobeniusNu(...,ReturnList=>...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
frobeniusNu(...,Search=>...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
frobeniusNu(...,UseSpecialAlgorithms=>...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
frobeniusNu(...,Verbose=>...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
frobeniusNu(ZZ,Ideal) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
frobeniusNu(ZZ,Ideal,Ideal) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
frobeniusNu(ZZ,RingElement) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
frobeniusNu(ZZ,RingElement,Ideal) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
FrobeniusPower -- a valid value for the option ContainmentTest
-
FrobeniusRoot -- a valid value for the option ContainmentTest
-
FrobeniusThresholds -- a package for computing F-pure thresholds and related invariants
-
GlobalFrobeniusRoot -- a valid value for the option ContainmentTest
-
GuessStrategy -- an option for the function fpt to specify the criterion used for selecting numbers to check
-
isFJumpingExponent -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(...,AssumeDomain=>...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(...,AtOrigin=>...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(...,FrobeniusRootStrategy=>...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(...,MaxCartierIndex=>...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(...,QGorensteinIndex=>...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(...,Verbose=>...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(Number,RingElement) -- whether a given number is an F-jumping exponent
-
isFPT -- checks whether a given rational number is the F-pure threshold
-
isFPT(...,AssumeDomain=>...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(...,AtOrigin=>...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(...,FrobeniusRootStrategy=>...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(...,MaxCartierIndex=>...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(...,QGorensteinIndex=>...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(...,Verbose=>...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(Number,RingElement) -- checks whether a given rational number is the F-pure threshold
-
isSimpleNormalCrossing -- whether a polynomial is a product of factors that are in simple normal crossing
-
isSimpleNormalCrossing(...,AtOrigin=>...) -- whether a polynomial is a product of factors that are in simple normal crossing
-
isSimpleNormalCrossing(...,Verbose=>...) -- whether a polynomial is a product of factors that are in simple normal crossing
-
isSimpleNormalCrossing(Product) -- whether a polynomial is a product of factors that are in simple normal crossing
-
isSimpleNormalCrossing(RingElement) -- whether a polynomial is a product of factors that are in simple normal crossing
-
ReturnList -- an option for the function frobeniusNu to return a list of successive nu values
-
Search -- an option for the function frobeniusNu to specify the search method for testing containments of powers of ideals
-
StandardPower -- a valid value for the option ContainmentTest
-
UseSpecialAlgorithms -- an option for the functions fpt and frobeniusNu to use special algorithms to speed up computations