Description
Let $\{g_1,g_2,\ldots,g_r\}$ be a graded basis of
F and let be $L=\{I_1,I_2,\ldots,I_r\}$. This method yields the following submodule of
F: $I_1 g_1 \oplus I_2 g_2 \oplus \cdots \oplus I_r g_r$.
Example:
i1 : E = QQ[e_1..e_4, SkewCommutative => true]
o1 = E
o1 : PolynomialRing, 4 skew commutative variables
|
i2 : F=E^{0,0,0}
3
o2 = E
o2 : E-module, free
|
i3 : I_1=ideal {e_1*e_2,e_3*e_4};
o3 : Ideal of E
|
i4 : I_2=ideal {e_1*e_2,e_2*e_3*e_4};
o4 : Ideal of E
|
i5 : I_3=ideal {e_2*e_3*e_4};
o5 : Ideal of E
|
i6 : l={I_1,I_2,I_3};
|
i7 : M=createModule(l,F)
o7 = image | e_3e_4 e_1e_2 0 0 0 |
| 0 0 e_1e_2 e_2e_3e_4 0 |
| 0 0 0 0 e_2e_3e_4 |
3
o7 : E-module, submodule of E
|