From a given m x n - Matrix of rank r, maxCol returns a submatrix M form by a maximal set of linear independent columns, and the list of columns c chosen.
NOTE: because of the necessity of rank the base field need to be QQ for doing generic evaluation. If not, one gets the message: expected an affine ring (consider Generic=>true to work over QQ).
i3 : R=QQ[a..g]
o3 = R
o3 : PolynomialRing
i4 : M = matrix {{a,a,b},{c,c,d},{e,e,f},{g,g,g}}
o4 = | a a b |
| c c d |
| e e f |
| g g g |
4 3
o4 : Matrix R <--- R
i5 : maxCol M
o5 = {| a b |, {0, 2}}
| c d |
| e f |
| g g |
o5 : List
See also
maxMinor -- Returns a maximal minor of the matrix of full rank.