CoincidentRootLoci : Index
-
apolar -- the apolar map
-
apolar(...,Variable=>...) -- specify a name for a variable
-
apolar(RingElement) -- the apolar ideal
-
apolar(RingElement,ZZ) -- homogeneous components of the apolar ideal
-
apolar(ZZ,ZZ) -- the apolar map
-
apolar(ZZ,ZZ,Ring) -- the apolar map
-
chowForm(CoincidentRootLocus) -- Chow form of a coincident root locus
-
codim(CoincidentRootLocus) -- compute the codimension
-
coefficientRing(CoincidentRootLocus) -- get the coefficient ring
-
CoincidentRootLoci -- A package for computations with coincident root loci
-
CoincidentRootLocus -- the class of all coincident root loci
-
coincidentRootLocus -- makes a coincident root locus
-
CoincidentRootLocus * CoincidentRootLocus -- projective join of coincident root loci
-
coincidentRootLocus(...,Variable=>...) -- specify a name for a variable
-
coincidentRootLocus(List) -- makes a coincident root locus
-
coincidentRootLocus(VisibleList,Ring) -- makes a coincident root locus
-
complexrank -- compute the complex rank
-
complexrank(...,Limit=>...) -- set a bound for the rank
-
complexrank(RingElement) -- compute the complex rank
-
CRL (missing documentation)
-
degree(CoincidentRootLocus) -- compute the degree
-
dim(CoincidentRootLocus) -- compute the dimension
-
dual(CoincidentRootLocus) -- the projectively dual to a coincident root locus
-
generic -- get the generic element
-
generic(...,Reduce=>...) -- reduce the number of variables
-
generic(...,Variable=>...) -- specify a name for a variable
-
generic(CoincidentRootLocus) -- get the generic element
-
ideal(CoincidentRootLocus) -- the defining ideal of a coincident root locus
-
isInCoisotropic(Ideal,CoincidentRootLocus) -- test membership in a coisotropic hypersurface
-
isSubset(CoincidentRootLocus,CoincidentRootLocus) -- whether one object is a subset of another
-
map(CoincidentRootLocus) -- the map associated to a coincident root locus
-
member(RingElement,CoincidentRootLocus) -- test membership in a coincident root locus
-
partition(CoincidentRootLocus) -- the partition associated to a coincident root locus
-
polarDegrees -- polar degrees of a coincident root locus
-
polarDegrees(CoincidentRootLocus) -- polar degrees of a coincident root locus
-
projectiveJoin -- projective join of coincident root loci
-
projectiveTangentSpace -- projective tangent space
-
projectiveTangentSpace(CoincidentRootLocus,RingElement) -- projective tangent space
-
QepcadOptions -- set the number of cells in the garbage collected space
-
random(CoincidentRootLocus) -- get a random element
-
randomBinaryForm -- random homogeneous polynomial in two variables
-
randomBinaryForm(...,Variable=>...) -- specify a name for a variable
-
randomBinaryForm(ZZ) -- random homogeneous polynomial in two variables
-
randomBinaryForm(ZZ,Ring) -- random homogeneous polynomial in two variables
-
randomBinaryForm(ZZ,Thing,Thing) -- random homogeneous polynomial in two variables
-
randomBinaryForm(ZZ,Thing,Thing,Ring) -- random homogeneous polynomial in two variables
-
randomInCoisotropic -- get a random element
-
randomInCoisotropic(CoincidentRootLocus,ZZ) -- get a random element
-
realrank -- compute the real rank
-
realrank(...,Limit=>...) -- set a bound for the rank
-
realrank(...,QepcadOptions=>...) -- set the number of cells in the garbage collected space
-
realrank(...,Range=>...) -- can be assigned an interval
-
realrank(...,Verbose=>...) -- request verbose feedback
-
realrank(RingElement) -- compute the real rank
-
realRankBoundary -- algebraic boundaries among typical ranks for real binary forms
-
realRankBoundary(...,Variable=>...) -- specify a name for a variable
-
realRankBoundary(ZZ,ZZ) -- algebraic boundaries among typical ranks for real binary forms
-
realRankBoundary(ZZ,ZZ,Ring) -- algebraic boundaries among typical ranks for real binary forms
-
realroots -- real roots of a binary form
-
realroots(...,Verbose=>...) -- request verbose feedback
-
realroots(RingElement) -- real roots of a binary form
-
recover -- recover the binary form from its apolar ideal
-
recover(Ideal) -- recover the binary form from its apolar ideal
-
recover(RingElement,RingElement) -- recover the binary form from its apolar ideal
-
ring(CoincidentRootLocus) -- get the ring of a coincident root locus
-
singularLocus(CoincidentRootLocus) -- the singular locus of a coincident root locus
-
subsets(CoincidentRootLocus) -- produce all the subloci
-
supsets -- produce all the suploci
-
supsets(CoincidentRootLocus) -- produce all the suploci
-
switch(Ideal)
-
switch(List)
-
switch(RingElement)