BettiCharacters : Index
-
Action -- the class of all finite group actions
-
action -- define finite group action
-
action(...,Sub=>...) -- format ring actors as one-row substitution matrices
-
action(ChainComplex,List) -- define finite group action on a resolution
-
action(ChainComplex,List,List,ZZ) -- define finite group action on a resolution
-
action(Ideal,List) -- define finite group action on a graded module
-
action(Ideal,List,List) -- define finite group action on a graded module
-
action(Module,List) -- define finite group action on a graded module
-
action(Module,List,List) -- define finite group action on a graded module
-
action(PolynomialRing,List) -- define finite group action on a graded module
-
action(PolynomialRing,List,List) -- define finite group action on a graded module
-
action(QuotientRing,List) -- define finite group action on a graded module
-
action(QuotientRing,List,List) -- define finite group action on a graded module
-
ActionOnComplex -- the class of all finite group actions on complexes
-
ActionOnGradedModule -- the class of all finite group actions on graded modules
-
actors -- group elements of an action
-
actors(Action) -- group elements of an action
-
actors(ActionOnComplex,ZZ) -- group elements of action on resolution
-
actors(ActionOnGradedModule,List) -- group elements acting on components of a module
-
actors(ActionOnGradedModule,ZZ) -- group elements acting on components of a module
-
BettiCharacters -- finite group characters on free resolutions and graded modules
-
BettiCharacters Example 1 -- Specht ideals / subspace arrangements
-
BettiCharacters Example 2 -- Symbolic powers of star configurations
-
BettiCharacters Example 3 -- Klein configuration of points
-
Character -- the class of all characters of finite group representations
-
character -- compute characters of finite group action
-
Character ** Character -- tensor product of characters
-
Character ++ Character -- direct sum of characters
-
Character / CharacterTable -- decompose a character into irreducible characters
-
Character Array -- homological shift
-
Character operations -- shift, direct sum, dual, and tensor product
-
character(ActionOnComplex) -- compute all Betti characters of minimal free resolution
-
character(ActionOnComplex,ZZ) -- compute Betti characters of minimal free resolution
-
character(ActionOnGradedModule,List) -- compute characters of graded components of a module
-
character(ActionOnGradedModule,ZZ) -- compute characters of graded components of a module
-
character(ActionOnGradedModule,ZZ,ZZ) -- compute characters of graded components of a module
-
character(CharacterDecomposition,CharacterTable) -- recover character from decomposition
-
character(PolynomialRing,ZZ,HashTable) -- construct a character
-
CharacterDecomposition -- the class of all finite group character decompositions
-
CharacterDecomposition * CharacterTable -- recover character from decomposition
-
CharacterTable -- the class of all character tables of finite groups
-
characterTable -- construct a character table
-
characterTable(...,Labels=>...) -- custom labels for irreducible characters
-
characterTable(List,Matrix,PolynomialRing,List) -- construct a character table
-
characterTable(List,Matrix,PolynomialRing,RingMap) -- construct a character table
-
decomposeCharacter -- decompose a character into irreducible characters
-
decomposeCharacter(Character,CharacterTable) -- decompose a character into irreducible characters
-
directSum(Character) -- direct sum of characters
-
dual -- dual character
-
dual(Character,List) -- dual character
-
dual(Character,RingMap) -- dual character
-
inverseRingActors -- get inverse of action on ring generators
-
inverseRingActors(...,Sub=>...) -- format ring actors as one-row substitution matrices
-
inverseRingActors(Action) -- get inverse of action on ring generators
-
Labels -- custom labels for irreducible characters
-
labels -- custom labels for irreducible characters
-
net(Action) -- format for printing, as a net
-
net(Character) -- format for printing, as a net
-
net(CharacterDecomposition) -- format for printing, as a net
-
net(CharacterTable) -- format for printing, as a net
-
numActors -- number of acting elements
-
numActors(Action) -- number of acting elements
-
ring(Action) -- get ring of object acted upon
-
ringActors -- get action on ring generators
-
ringActors(...,Sub=>...) -- format ring actors as one-row substitution matrices
-
ringActors(Action) -- get action on ring generators
-
Sub -- format ring actors as one-row substitution matrices
-
symmetricGroupActors -- permutation action of the symmetric group
-
symmetricGroupActors(PolynomialRing) -- permutation action of the symmetric group
-
symmetricGroupTable -- character table of the symmetric group
-
symmetricGroupTable(PolynomialRing) -- character table of the symmetric group
-
target(Action) -- get object acted upon
-
tensor(Character,Character) -- tensor product of characters