next | previous | forward | backward | up | top | index | toc | Macaulay2 website
BettiCharacters > character > character(ActionOnGradedModule,List)

character(ActionOnGradedModule,List) -- compute characters of graded components of a module

Synopsis

Description

This function is provided by the package BettiCharacters.

Use this function to compute the characters of the finite group action on the graded components of a module. The second argument is the (multi)degree of the desired component. For $\mathbb{Z}$-graded rings, one may compute characters in a range of degrees by providing the lowest and highest degrees in the range.

To illustrate, we compute the Betti characters of a symmetric group on the graded components of a polynomial ring, a monomial ideal, and their quotient. The characters are determined by five permutations with cycle types, in order: 4, 31, 22, 211, 1111.

i1 : R = QQ[x_1..x_4]

o1 = R

o1 : PolynomialRing
i2 : I = ideal apply(subsets(gens R,2),product)

o2 = ideal (x x , x x , x x , x x , x x , x x )
             1 2   1 3   2 3   1 4   2 4   3 4

o2 : Ideal of R
i3 : G = {matrix{{x_2,x_3,x_4,x_1}},
          matrix{{x_2,x_3,x_1,x_4}},
          matrix{{x_2,x_1,x_4,x_3}},
          matrix{{x_2,x_1,x_3,x_4}},
          matrix{{x_1,x_2,x_3,x_4}} }

o3 = {| x_2 x_3 x_4 x_1 |, | x_2 x_3 x_1 x_4 |, | x_2 x_1 x_4 x_3 |, | x_2
     ------------------------------------------------------------------------
     x_1 x_3 x_4 |, | x_1 x_2 x_3 x_4 |}

o3 : List
i4 : Q = R/I

o4 = Q

o4 : QuotientRing
i5 : A = action(R,G)

o5 = PolynomialRing with 5 actors

o5 : ActionOnGradedModule
i6 : B = action(I,G)

o6 = Ideal with 5 actors

o6 : ActionOnGradedModule
i7 : C = action(Q,G)

o7 = QuotientRing with 5 actors

o7 : ActionOnGradedModule
i8 : character(A,0,5)

o8 = Character over R
      
     (0, {0}) => | 1 1 1 1 1 |
     (0, {1}) => | 0 1 0 2 4 |
     (0, {2}) => | 0 1 2 4 10 |
     (0, {3}) => | 0 2 0 6 20 |
     (0, {4}) => | 1 2 3 9 35 |
     (0, {5}) => | 0 2 0 12 56 |

o8 : Character
i9 : character(B,0,5)

o9 = Character over R
      
     (0, {2}) => | 0 0 2 2 6 |
     (0, {3}) => | 0 1 0 4 16 |
     (0, {4}) => | 1 1 3 7 31 |
     (0, {5}) => | 0 1 0 10 52 |

o9 : Character
i10 : character(C,0,5)

o10 = Character over R
       
      (0, {0}) => | 1 1 1 1 1 |
      (0, {1}) => | 0 1 0 2 4 |
      (0, {2}) => | 0 1 0 2 4 |
      (0, {3}) => | 0 1 0 2 4 |
      (0, {4}) => | 0 1 0 2 4 |
      (0, {5}) => | 0 1 0 2 4 |

o10 : Character
i11 : character(C,6)

o11 = Character over R
       
      (0, {6}) => | 0 1 0 2 4 |

o11 : Character

See also

Ways to use this method: