next | previous | forward | backward | up | top | index | toc | Macaulay2 website
BettiCharacters > actors

actors -- group elements of an action

Description

This function is provided by the package BettiCharacters.

When called (without additional arguments) on an object of type Action, this function returns the list of group elements originally provided by the user to act on a module or in a given homological degree of a resolution. Note that these group elements are assumed to trivial, unless otherwise indicated when constructing the action.

The user may specify additional arguments to obtain elements of the group acting in other degrees. See the specific use cases for more details.

i1 : R = QQ[x_1..x_4]

o1 = R

o1 : PolynomialRing
i2 : I = ideal apply(subsets(gens R,2),product)

o2 = ideal (x x , x x , x x , x x , x x , x x )
             1 2   1 3   2 3   1 4   2 4   3 4

o2 : Ideal of R
i3 : M = module I

o3 = image | x_1x_2 x_1x_3 x_2x_3 x_1x_4 x_2x_4 x_3x_4 |

                             1
o3 : R-module, submodule of R
i4 : RM = res M

      6      8      3
o4 = R  <-- R  <-- R  <-- 0
                           
     0      1      2      3

o4 : ChainComplex
i5 : G = {matrix{{x_2,x_3,x_4,x_1}},
          matrix{{x_2,x_3,x_1,x_4}},
          matrix{{x_2,x_1,x_4,x_3}},
          matrix{{x_2,x_1,x_3,x_4}},
          matrix{{x_1,x_2,x_3,x_4}} }

o5 = {| x_2 x_3 x_4 x_1 |, | x_2 x_3 x_1 x_4 |, | x_2 x_1 x_4 x_3 |, | x_2
     ------------------------------------------------------------------------
     x_1 x_3 x_4 |, | x_1 x_2 x_3 x_4 |}

o5 : List
i6 : G' = { (id_(R^6))_{2,4,5,0,1,3},
            (id_(R^6))_{2,0,1,4,5,3},
            (id_(R^6))_{0,4,3,2,1,5},
            (id_(R^6))_{0,2,1,4,3,5},
             id_(R^6) }

o6 = {| 0 0 0 1 0 0 |, | 0 1 0 0 0 0 |, | 1 0 0 0 0 0 |, | 1 0 0 0 0 0 |, | 1
      | 0 0 0 0 1 0 |  | 0 0 1 0 0 0 |  | 0 0 0 0 1 0 |  | 0 0 1 0 0 0 |  | 0
      | 1 0 0 0 0 0 |  | 1 0 0 0 0 0 |  | 0 0 0 1 0 0 |  | 0 1 0 0 0 0 |  | 0
      | 0 0 0 0 0 1 |  | 0 0 0 0 0 1 |  | 0 0 1 0 0 0 |  | 0 0 0 0 1 0 |  | 0
      | 0 1 0 0 0 0 |  | 0 0 0 1 0 0 |  | 0 1 0 0 0 0 |  | 0 0 0 1 0 0 |  | 0
      | 0 0 1 0 0 0 |  | 0 0 0 0 1 0 |  | 0 0 0 0 0 1 |  | 0 0 0 0 0 1 |  | 0
     ------------------------------------------------------------------------
     0 0 0 0 0 |}
     1 0 0 0 0 |
     0 1 0 0 0 |
     0 0 1 0 0 |
     0 0 0 1 0 |
     0 0 0 0 1 |

o6 : List
i7 : A = action(RM,G,G',0)

o7 = ChainComplex with 5 actors

o7 : ActionOnComplex
i8 : actors(A)

o8 = {{2} | 0 0 0 1 0 0 |, {2} | 0 1 0 0 0 0 |, {2} | 1 0 0 0 0 0 |, {2} | 1
      {2} | 0 0 0 0 1 0 |  {2} | 0 0 1 0 0 0 |  {2} | 0 0 0 0 1 0 |  {2} | 0
      {2} | 1 0 0 0 0 0 |  {2} | 1 0 0 0 0 0 |  {2} | 0 0 0 1 0 0 |  {2} | 0
      {2} | 0 0 0 0 0 1 |  {2} | 0 0 0 0 0 1 |  {2} | 0 0 1 0 0 0 |  {2} | 0
      {2} | 0 1 0 0 0 0 |  {2} | 0 0 0 1 0 0 |  {2} | 0 1 0 0 0 0 |  {2} | 0
      {2} | 0 0 1 0 0 0 |  {2} | 0 0 0 0 1 0 |  {2} | 0 0 0 0 0 1 |  {2} | 0
     ------------------------------------------------------------------------
     0 0 0 0 0 |, {2} | 1 0 0 0 0 0 |}
     0 1 0 0 0 |  {2} | 0 1 0 0 0 0 |
     1 0 0 0 0 |  {2} | 0 0 1 0 0 0 |
     0 0 0 1 0 |  {2} | 0 0 0 1 0 0 |
     0 0 1 0 0 |  {2} | 0 0 0 0 1 0 |
     0 0 0 0 1 |  {2} | 0 0 0 0 0 1 |

o8 : List
i9 : B = action(M,G)

o9 = Module with 5 actors

o9 : ActionOnGradedModule
i10 : actors(B)

o10 = {| 1 |, | 1 |, | 1 |, | 1 |, | 1 |}

o10 : List

See also

Ways to use actors :

For the programmer

The object actors is a method function.

Menu