Description
This function takes as input a coherent sheaf
F, two integers
l and
h, and prints the dimension
dim HH^j F(i-j) for
h>=i>=l. As a simple example, we compute the dimensions of cohomology groups of the projective plane.
i1 : S = ZZ/32003[x_0..x_2];
|
i2 : PP2 = Proj S;
|
i3 : F =sheaf S^1
1
o3 = OO
PP2
o3 : coherent sheaf on PP2
|
i4 : cohomologyTable(F,-10,5)
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
o4 = 2: 55 45 36 28 21 15 10 6 3 1 . . . . . .
1: . . . . . . . . . . . . . . . .
0: . . . . . . . . . . 1 3 6 10 15 21
o4 : CohomologyTally
|
There is also a built-in sheaf cohomology function
HH in Macaulay2. However, these algorithms are much slower than
cohomologyTable.
Alternatively, this function takes as input a presentation matrix
m of a finitely generated graded
S-module
Mand an exterior algebra
Ewith the same number of variables. In this form, the function is equivalent to the function
sheafCohomology in
Sheaf Algorithms Using Exterior Algebra.
i5 : S = ZZ/32003[x_0..x_2];
|
i6 : E = ZZ/32003[e_0..e_2, SkewCommutative=>true];
|
i7 : m = koszul (3, vars S);
3 1
o7 : Matrix S <--- S
|
i8 : regularity coker m
o8 = 2
|
i9 : betti tateResolution(m,E,-6,2)
0 1 2 3 4 5 6 7 8 9 10
o9 = total: 15 8 3 1 3 8 15 24 35 48 63
-4: 15 8 3 . . . . . . . .
-3: . . . 1 . . . . . . .
-2: . . . . 3 8 15 24 35 48 63
o9 : BettiTally
|
i10 : cohomologyTable(m,E,-6,2)
-6 -5 -4 -3 -2 -1 0 1 2 3 4
o10 = 2: 63 48 35 24 15 8 3 . . . .
1: . . . . . . . 1 . . .
0: . . . . . . . . 3 8 15
o10 : CohomologyTally
|
As the third example, we compute the dimensions of cohomology groups of the structure sheaf of an irregular elliptic surface.
i11 : S = ZZ/32003[x_0..x_4];
|
i12 : X = Proj S;
|
i13 : ff = res coker map(S^{1:0},S^{3:-1,2:-2},{{x_0..x_2,x_3^2,x_4^2}});
|
i14 : alpha = map(S^{1:-2},target ff.dd_3,{{1,4:0,x_0,2:0,x_1,0}})*ff.dd_3;
1 10
o14 : Matrix S <--- S
|
i15 : beta = ff.dd_4//syz alpha;
18 5
o15 : Matrix S <--- S
|
i16 : K = syz syz alpha|beta;
18 21
o16 : Matrix S <--- S
|
i17 : fK = res prune coker K;
|
i18 : s = random(target fK.dd_1,S^{1:-4,3:-5});
13 4
o18 : Matrix S <--- S
|
i19 : ftphi = res prune coker transpose (fK.dd_1|s);
|
i20 : I = ideal ftphi.dd_2;
o20 : Ideal of S
|
i21 : F = sheaf S^1/I;
|
i22 : cohomologyTable(F,-2,6)
-2 -1 0 1 2 3 4 5 6 7 8
o22 = 2: 123 75 39 15 3 . . . . . .
1: . . . 1 2 1 . . . . .
0: . . 1 5 16 39 75 123 183 255 339
o22 : CohomologyTally
|