VirtualResolutions : Index
-
Attempt -- limit number of attempts for randomCurveP1P2
-
curveFromP3toP1P2 -- creates the ideal of a curve in P^1xP^2 from the ideal of a curve in P^3
-
curveFromP3toP1P2(...,PreserveDegree=>...) -- Determines if curve is disjoint from base loci
-
curveFromP3toP1P2(Ideal) -- creates the ideal of a curve in P^1xP^2 from the ideal of a curve in P^3
-
GeneralElements -- combines generators of same degree into a general linear combination
-
idealSheafGens -- creates a list of subsets of the minimal generators that generate a given ideal up to saturation
-
idealSheafGens(...,GeneralElements=>...) -- combines generators of same degree into a general linear combination
-
idealSheafGens(ZZ,Ideal,Ideal) -- creates a list of subsets of the minimal generators that generate a given ideal up to saturation
-
idealSheafGens(ZZ,Ideal,NormalToricVariety) -- creates a list of subsets of the minimal generators that generate a given ideal up to saturation
-
isVirtual -- checks whether a chain complex is a virtual resolution
-
isVirtual(...,Strategy=>...) -- changes strategy from computing homology to computing minors of boundary maps
-
isVirtual(Ideal,ChainComplex) -- checks whether a chain complex is a virtual resolution
-
isVirtual(NormalToricVariety,ChainComplex) -- checks whether a chain complex is a virtual resolution
-
LowerLimit -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
-
multigradedRegularity -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
-
multigradedRegularity(...,LowerLimit=>...) -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
-
multigradedRegularity(...,Strategy=>...) -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
-
multigradedRegularity(...,UpperLimit=>...) -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
-
multigradedRegularity(NormalToricVariety,Ideal) -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
-
multigradedRegularity(NormalToricVariety,Module) -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
-
multigradedRegularity(Ring,Ideal) -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
-
multigradedRegularity(Ring,Module) -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
-
PreserveDegree -- Determines if curve is disjoint from base loci
-
randomCurveP1P2 -- creates the ideal of a random curve in P^1xP^2
-
randomCurveP1P2(...,Attempt=>...) -- limit number of attempts for randomCurveP1P2
-
randomCurveP1P2(ZZ,ZZ) -- creates the ideal of a random curve in P^1xP^2
-
randomCurveP1P2(ZZ,ZZ,Ring) -- creates the ideal of a random curve in P^1xP^2
-
randomMonomialCurve -- creates the ideal of a random monomial curve of degree (d,e) in P^1xP^2
-
randomMonomialCurve(ZZ,ZZ) -- creates the ideal of a random monomial curve of degree (d,e) in P^1xP^2
-
randomMonomialCurve(ZZ,ZZ,Ring) -- creates the ideal of a random monomial curve of degree (d,e) in P^1xP^2
-
randomRationalCurve -- creates the ideal of a random rational curve of degree (d,e) in P^1xP^2
-
randomRationalCurve(ZZ,ZZ) -- creates the ideal of a random rational curve of degree (d,e) in P^1xP^2
-
randomRationalCurve(ZZ,ZZ,Ring) -- creates the ideal of a random rational curve of degree (d,e) in P^1xP^2
-
resolveViaFatPoint -- returns a virtual resolution of a zero-dimensional scheme
-
resolveViaFatPoint(Ideal,Ideal,List) -- returns a virtual resolution of a zero-dimensional scheme
-
UpperLimit -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
-
virtualOfPair -- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
-
virtualOfPair(...,LengthLimit=>...) -- stop when the virtual resolution reaches this length
-
virtualOfPair(ChainComplex,List) -- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
-
virtualOfPair(Ideal,List) -- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
-
virtualOfPair(Module,List) -- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
-
VirtualResolutions -- a package for computing virtual resolutions