ReesAlgebra : Index
-
analyticSpread -- Compute the analytic spread of a module or ideal
-
analyticSpread(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
analyticSpread(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
analyticSpread(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
analyticSpread(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
analyticSpread(...,Strategy=>...) -- Choose a strategy for the saturation step
-
analyticSpread(Ideal) -- Compute the analytic spread of a module or ideal
-
analyticSpread(Ideal,RingElement) -- Compute the analytic spread of a module or ideal
-
analyticSpread(Module) -- Compute the analytic spread of a module or ideal
-
analyticSpread(Module,RingElement) -- Compute the analytic spread of a module or ideal
-
distinguished -- Compute the distinguished subvarieties of a pullback, intersection or cone
-
distinguished(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
distinguished(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
distinguished(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
distinguished(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
distinguished(...,Strategy=>...) -- Choose a strategy for the saturation step
-
distinguished(...,Variable=>...) -- Choose name for variables in the created ring
-
distinguished(Ideal) -- Compute the distinguished subvarieties of a pullback, intersection or cone
-
distinguished(Ideal,Ideal) -- Compute the distinguished subvarieties of a pullback, intersection or cone
-
distinguished(RingMap,Ideal) -- Compute the distinguished subvarieties of a pullback, intersection or cone
-
expectedReesIdeal -- symmetric algebra ideal plus jacobian dual
-
expectedReesIdeal(Ideal) -- symmetric algebra ideal plus jacobian dual
-
expectedReesIdeal(Module) -- symmetric algebra ideal plus jacobian dual
-
intersectInP -- Compute distinguished varieties for an intersection in A^n or P^n
-
intersectInP(...,BasisElementLimit=>...) -- Option for intersectInP
-
intersectInP(...,DegreeLimit=>...) -- Option for intersectInP
-
intersectInP(...,MinimalGenerators=>...) -- Option for intersectInP
-
intersectInP(...,PairLimit=>...) -- Option for intersectInP
-
intersectInP(...,Strategy=>...) -- Option for intersectInP
-
intersectInP(...,Variable=>...) -- Option for intersectInP
-
intersectInP(Ideal,Ideal) -- Compute distinguished varieties for an intersection in A^n or P^n
-
isLinearType -- Determine whether module has linear type
-
isLinearType(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
isLinearType(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
isLinearType(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
isLinearType(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
isLinearType(...,Strategy=>...) -- Choose a strategy for the saturation step
-
isLinearType(Ideal) -- Determine whether module has linear type
-
isLinearType(Ideal,RingElement) -- Determine whether module has linear type
-
isLinearType(Module) -- Determine whether module has linear type
-
isLinearType(Module,RingElement) -- Determine whether module has linear type
-
isReduction -- Determine whether an ideal is a reduction
-
isReduction(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
isReduction(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
isReduction(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
isReduction(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
isReduction(...,Strategy=>...) -- Choose a strategy for the saturation step
-
isReduction(...,Variable=>...) -- Choose name for variables in the created ring
-
isReduction(Ideal,Ideal) -- Determine whether an ideal is a reduction
-
isReduction(Ideal,Ideal,RingElement) -- Determine whether an ideal is a reduction
-
isReduction(Module,Module) -- Determine whether an ideal is a reduction
-
isReduction(Module,Module,RingElement) -- Determine whether an ideal is a reduction
-
jacobianDual -- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
-
jacobianDual(...,Variable=>...) -- Choose name for variables in the created ring
-
jacobianDual(Matrix) -- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
-
jacobianDual(Matrix,Matrix,Matrix) -- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
-
minimalReduction -- Find a minimal reduction of an ideal
-
minimalReduction(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
minimalReduction(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
minimalReduction(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
minimalReduction(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
minimalReduction(...,Strategy=>...) -- Choose a strategy for the saturation step
-
minimalReduction(...,Tries=>...) -- Set the number of random tries to compute a minimal reduction
-
minimalReduction(Ideal) -- Find a minimal reduction of an ideal
-
multiplicity -- Compute the Hilbert-Samuel multiplicity of an ideal
-
multiplicity(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
multiplicity(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
multiplicity(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
multiplicity(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
multiplicity(...,Strategy=>...) -- Choose a strategy for the saturation step
-
multiplicity(...,Variable=>...) -- Option for intersectInP
-
multiplicity(Ideal) -- Compute the Hilbert-Samuel multiplicity of an ideal
-
multiplicity(Ideal,RingElement) -- Compute the Hilbert-Samuel multiplicity of an ideal
-
normalCone -- The normal cone of a subscheme
-
normalCone(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
normalCone(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
normalCone(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
normalCone(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
normalCone(...,Strategy=>...) -- Choose a strategy for the saturation step
-
normalCone(...,Variable=>...) -- Choose name for variables in the created ring
-
normalCone(Ideal) -- The normal cone of a subscheme
-
normalCone(Ideal,RingElement) -- The normal cone of a subscheme
-
PlaneCurveSingularities -- Using the Rees Algebra to resolve plane curve singularities
-
reductionNumber -- Reduction number of one ideal with respect to another
-
reductionNumber(Ideal,Ideal) -- Reduction number of one ideal with respect to another
-
ReesAlgebra -- Compute Rees algebras and their invariants
-
reesAlgebra -- Compute the defining ideal of the Rees Algebra
-
reesAlgebra(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
reesAlgebra(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
reesAlgebra(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
reesAlgebra(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
reesAlgebra(...,Strategy=>...) -- Choose a strategy for the saturation step
-
reesAlgebra(...,Variable=>...) -- Choose name for variables in the created ring
-
reesAlgebra(Ideal) -- Compute the defining ideal of the Rees Algebra
-
reesAlgebra(Ideal,RingElement) -- Compute the defining ideal of the Rees Algebra
-
reesAlgebra(Module) -- Compute the defining ideal of the Rees Algebra
-
reesAlgebra(Module,RingElement) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
reesIdeal(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
reesIdeal(...,Jacobian=>...) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
reesIdeal(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
reesIdeal(...,Strategy=>...) -- Choose a strategy for the saturation step
-
reesIdeal(...,Trim=>...) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(...,Variable=>...) -- Choose name for variables in the created ring
-
reesIdeal(Ideal) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(Ideal,RingElement) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(Module) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(Module,RingElement) -- Compute the defining ideal of the Rees Algebra
-
specialFiber -- Special fiber of a blowup
-
specialFiber(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
specialFiber(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
specialFiber(...,Jacobian=>...) -- Special fiber of a blowup
-
specialFiber(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
specialFiber(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
specialFiber(...,Strategy=>...) -- Choose a strategy for the saturation step
-
specialFiber(...,Trim=>...) -- Special fiber of a blowup
-
specialFiber(...,Variable=>...) -- Choose name for variables in the created ring
-
specialFiber(Ideal) -- Special fiber of a blowup
-
specialFiber(Ideal,RingElement) -- Special fiber of a blowup
-
specialFiber(Module) -- Special fiber of a blowup
-
specialFiber(Module,RingElement) -- Special fiber of a blowup
-
specialFiberIdeal -- Special fiber of a blowup
-
specialFiberIdeal(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
specialFiberIdeal(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
specialFiberIdeal(...,Jacobian=>...) -- Special fiber of a blowup
-
specialFiberIdeal(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
-
specialFiberIdeal(...,PairLimit=>...) -- Bound the number of s-pairs considered in the saturation step
-
specialFiberIdeal(...,Strategy=>...) -- Choose a strategy for the saturation step
-
specialFiberIdeal(...,Trim=>...) -- Special fiber of a blowup
-
specialFiberIdeal(...,Variable=>...) -- Choose name for variables in the created ring
-
specialFiberIdeal(Ideal) -- Special fiber of a blowup
-
specialFiberIdeal(Ideal,RingElement) -- Special fiber of a blowup
-
specialFiberIdeal(Module) -- Special fiber of a blowup
-
specialFiberIdeal(Module,RingElement) -- Special fiber of a blowup
-
symmetricAlgebraIdeal -- Ideal of the symmetric algebra of an ideal or module
-
symmetricAlgebraIdeal(...,VariableBaseName=>...) -- Ideal of the symmetric algebra of an ideal or module
-
symmetricAlgebraIdeal(Ideal) -- Ideal of the symmetric algebra of an ideal or module
-
symmetricAlgebraIdeal(Module) -- Ideal of the symmetric algebra of an ideal or module
-
symmetricKernel -- Compute the Rees ring of the image of a matrix
-
symmetricKernel(...,Variable=>...) -- Choose name for variables in the created ring
-
symmetricKernel(Matrix) -- Compute the Rees ring of the image of a matrix
-
Tries -- Set the number of random tries to compute a minimal reduction
-
Trim -- Choose whether to trim (or find minimal generators) for the ideal or module.
-
versalEmbedding -- Compute a versal embedding
-
versalEmbedding(Ideal) -- Compute a versal embedding
-
versalEmbedding(Module) -- Compute a versal embedding
-
whichGm -- Largest Gm satisfied by an ideal
-
whichGm(Ideal) -- Largest Gm satisfied by an ideal