InvariantRing : Index
-
action -- the group action that produced a ring of invariants
-
action(RingOfInvariants) -- the group action that produced a ring of invariants
-
actionMatrix -- matrix of a linearly reductive action
-
actionMatrix(LinearlyReductiveAction) -- matrix of a linearly reductive action
-
ambient(RingOfInvariants) -- the ambient polynomial ring where the group acted upon
-
cyclicFactors -- of a diagonal action
-
cyclicFactors(DiagonalAction) -- of a diagonal action
-
Dade -- an optional argument for primaryInvariants determining whether to use the Dade algorithm
-
definingIdeal -- presentation of a ring of invariants as polynomial ring modulo the defining ideal
-
definingIdeal(RingOfInvariants) -- presentation of a ring of invariants as polynomial ring modulo the defining ideal
-
DegreeBound -- degree bound for invariants of finite groups
-
degreesRing(DiagonalAction) -- of a diagonal action
-
DegreeVector -- an optional argument for primaryInvariants that finds invariants of certain degrees
-
DiagonalAction -- the class of all diagonal actions
-
diagonalAction -- diagonal group action via weights
-
diagonalAction(Matrix,List,PolynomialRing) -- diagonal group action via weights
-
diagonalAction(Matrix,Matrix,List,PolynomialRing) -- diagonal group action via weights
-
diagonalAction(Matrix,PolynomialRing) -- diagonal group action via weights
-
dim(GroupAction) -- dimension of the polynomial ring being acted upon
-
equivariantHilbert -- stores equivariant Hilbert series expansions
-
equivariantHilbertSeries -- equivariant Hilbert series for a diagonal action
-
equivariantHilbertSeries(DiagonalAction) -- equivariant Hilbert series for a diagonal action
-
finiteAction -- the group action generated by a list of matrices
-
finiteAction(List,PolynomialRing) -- the group action generated by a list of matrices
-
finiteAction(Matrix,PolynomialRing) -- the group action generated by a list of matrices
-
FiniteGroupAction -- the class of all finite group actions
-
generators(FiniteGroupAction) -- generators of a finite group
-
generators(RingOfInvariants) -- the generators for a ring of invariants
-
group -- list all elements of the group of a finite group action
-
group(FiniteGroupAction) -- list all elements of the group of a finite group action
-
GroupAction -- the class of all group actions
-
groupIdeal -- ideal defining a linearly reductive group
-
groupIdeal(LinearlyReductiveAction) -- ideal defining a linearly reductive group
-
hilbertIdeal -- compute generators for the Hilbert ideal
-
hilbertIdeal(...,DegreeLimit=>...) -- GB option for invariants
-
hilbertIdeal(...,SubringLimit=>...) -- GB option for invariants
-
hilbertIdeal(LinearlyReductiveAction) -- compute generators for the Hilbert ideal
-
hilbertSeries(RingOfInvariants) -- Hilbert series of the invariant ring
-
hironakaDecomposition -- calculates a Hironaka decomposition for the invariant ring of a finite group
-
hironakaDecomposition(...,DegreeVector=>...) -- an optional argument for primaryInvariants that finds invariants of certain degrees
-
hironakaDecomposition(...,PrintDegreePolynomial=>...) -- an optional argument for secondaryInvariants that determines the printing of an informative polynomial
-
hironakaDecomposition(FiniteGroupAction) -- calculates a Hironaka decomposition for the invariant ring of a finite group
-
hsop algorithms -- an overview of the algorithms used in primaryInvariants
-
InvariantRing -- invariants of group actions
-
invariantRing -- the ring of invariants of a group action
-
invariantRing(...,DegreeBound=>...) -- degree bound for invariants of finite groups
-
invariantRing(...,UseCoefficientRing=>...) -- option to compute invariants over the given coefficient ring
-
invariantRing(...,UseLinearAlgebra=>...) -- strategy for computing invariants of finite groups
-
invariantRing(GroupAction) -- the ring of invariants of a group action
-
invariants -- computes the generating invariants of a group action
-
invariants(...,DegreeBound=>...) -- degree bound for invariants of finite groups
-
invariants(...,DegreeLimit=>...) -- GB option for invariants
-
invariants(...,SubringLimit=>...) -- GB option for invariants
-
invariants(...,UseCoefficientRing=>...) -- option to compute invariants over the given coefficient ring
-
invariants(...,UseLinearAlgebra=>...) -- strategy for computing invariants of finite groups
-
invariants(DiagonalAction) -- computes the generating invariants of a group action
-
invariants(FiniteGroupAction) -- computes the generating invariants of a group action
-
invariants(FiniteGroupAction,List) -- basis for graded component of invariant ring
-
invariants(FiniteGroupAction,ZZ) -- basis for graded component of invariant ring
-
invariants(LinearlyReductiveAction) -- invariant generators of Hilbert ideal
-
invariants(LinearlyReductiveAction,List) -- basis for graded component of invariant ring
-
invariants(LinearlyReductiveAction,ZZ) -- basis for graded component of invariant ring
-
isAbelian -- check whether a finite matrix group is Abelian
-
isAbelian(FiniteGroupAction) -- check whether a finite matrix group is Abelian
-
isInvariant -- check whether a polynomial is invariant under a group action
-
isInvariant(RingElement,DiagonalAction) -- check whether a polynomial is invariant under a group action
-
isInvariant(RingElement,FiniteGroupAction) -- check whether a polynomial is invariant under a group action
-
isInvariant(RingElement,LinearlyReductiveAction) -- check whether a polynomial is invariant under a group action
-
LinearlyReductiveAction -- the class of all (non finite, non toric) linearly reductive group actions
-
linearlyReductiveAction -- Linearly reductive group action
-
linearlyReductiveAction(Ideal,Matrix,PolynomialRing) -- Linearly reductive group action
-
linearlyReductiveAction(Ideal,Matrix,QuotientRing) -- Linearly reductive group action
-
molienSeries -- computes the Molien (Hilbert) series of the invariant ring of a finite group
-
molienSeries(FiniteGroupAction) -- computes the Molien (Hilbert) series of the invariant ring of a finite group
-
net(DiagonalAction) -- format for printing, as a net
-
net(FiniteGroupAction) -- format for printing, as a net
-
net(LinearlyReductiveAction) -- format for printing, as a net
-
net(RingOfInvariants) -- format for printing, as a net
-
numgens(DiagonalAction) -- number of generators of the finite part of a diagonal group
-
numgens(FiniteGroupAction) -- number of generators of a finite group
-
permutationMatrix -- convert a one-line notation or cyclic notation of a permutation to a matrix representation
-
permutationMatrix(Array) -- convert a one-line notation or cyclic notation of a permutation to a matrix representation
-
permutationMatrix(List) -- convert a one-line notation or cyclic notation of a permutation to a matrix representation
-
permutationMatrix(String) -- convert a one-line notation or cyclic notation of a permutation to a matrix representation
-
permutationMatrix(ZZ,Array) -- convert a one-line notation or cyclic notation of a permutation to a matrix representation
-
permutationMatrix(ZZ,List) -- convert a one-line notation or cyclic notation of a permutation to a matrix representation
-
PolynomialRing ^ GroupAction -- the ring of invariants of a group action
-
primaryInvariants -- computes a list of primary invariants for the invariant ring of a finite group
-
primaryInvariants(...,Dade=>...) -- an optional argument for primaryInvariants determining whether to use the Dade algorithm
-
primaryInvariants(...,DegreeVector=>...) -- an optional argument for primaryInvariants that finds invariants of certain degrees
-
primaryInvariants(FiniteGroupAction) -- computes a list of primary invariants for the invariant ring of a finite group
-
PrintDegreePolynomial -- an optional argument for secondaryInvariants that determines the printing of an informative polynomial
-
QuotientRing ^ LinearlyReductiveAction -- the ring of invariants of a group action
-
rank(DiagonalAction) -- of a diagonal action
-
relations(FiniteGroupAction) -- relations of a finite group
-
reynoldsOperator -- the image of a polynomial under the Reynolds operator
-
reynoldsOperator(RingElement,DiagonalAction) -- the image of a polynomial under the Reynolds operator
-
reynoldsOperator(RingElement,FiniteGroupAction) -- the image of a polynomial under the Reynolds operator
-
ring(GroupAction) -- the polynomial ring being acted upon
-
RingOfInvariants -- the class of the rings of invariants under the action of a finite group, an Abelian group or a linearly reductive group
-
schreierGraph -- Schreier graph of a finite group
-
schreierGraph(FiniteGroupAction) -- Schreier graph of a finite group
-
secondaryInvariants -- computes secondary invariants for the invariant ring of a finite group
-
secondaryInvariants(...,PrintDegreePolynomial=>...) -- an optional argument for secondaryInvariants that determines the printing of an informative polynomial
-
secondaryInvariants(List,FiniteGroupAction) -- computes secondary invariants for the invariant ring of a finite group
-
UseCoefficientRing -- option to compute invariants over the given coefficient ring
-
UseLinearAlgebra -- strategy for computing invariants of finite groups
-
UseNormaliz -- option for diagonal invariants
-
UsePolyhedra -- option for diagonal invariants
-
weights -- of a diagonal action
-
weights(DiagonalAction) -- of a diagonal action
-
words -- associate a word in the generators of a group to each element
-
words(FiniteGroupAction) -- associate a word in the generators of a group to each element