This routine computes the initial ideal of a left ideal I of the Weyl algebra with respect to a weight vector w = (u,v) where u+v >= 0. In the case where u+v > 0, then the ideal lives in the associated graded ring which is a commutative ring. In the case where u+v = 0, then the ideal lives in the associated graded ring which is again the Weyl algebra. In the general case u+v >= 0 the associated graded ring is somewhere between. There are two strategies to compute the initial ideal. One is to homogenize to an ideal of the homogeneous Weyl algebra. The other is to homogenize with respect to the weight vector w. For more details, see [SST, Sections 1.1 and 1.2].
i1 : makeWA(QQ[x,y]) o1 = QQ[x..y, dx, dy] o1 : PolynomialRing, 2 differential variables |
i2 : I = ideal (x*dx+2*y*dy-3, dx^2-dy) 2 o2 = ideal (x*dx + 2y*dy - 3, dx - dy) o2 : Ideal of QQ[x..y, dx, dy] |
i3 : inw(I, {1,3,3,-1}) 2 2 2 o3 = ideal (x*dx, dx , 2y*dx*dy, 4y dy + 2x*dx) o3 : Ideal of QQ[x..y, dx, dy] |
i4 : inw(I, {-1,-3,1,3}) o4 = ideal (x*dx + 2y*dy - 3, dy) o4 : Ideal of QQ[x..y, dx, dy] |
The weight vector w = (u,v) must have u+v>=0.
The object inw is a method function.